Phân tích thành nhân tử 6x2-7xy-3y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(2x^2-7xy+3y^2+x-3y\)
\(=2x^2-6xy-xy+3y^2+x-3y\)
\(=2x\left(x-3y\right)-y\left(x-3y\right)+\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2x-y+1\right)\)
Lời giải:
a.
Đặt $2a^2+5ab-3b^2-7b-2=(a+mb+n)(2a+pb+k)$ với $m,n,p,k$ nguyên
$\Leftrightarrow 2a^2+5ab-3b^2-7b-2=2a^2+ab(2m+p)+mpb^2+a(k+2n)+b(km+np)+kn$
Đồng nhất hệ số:
\(\left\{\begin{matrix} 2m+p=5\\ mp=-3\\ k+2n=0\\ km+np=-7\\ kn=-2\end{matrix}\right.\)
Giải hpt này ta thu được $m=3; n=1; p=-1; k=-2$
Vậy $2a^2+5ab-3b^2-7b-2=(a+3b+1)(2a-b-2)$
b. Đa thức không phân tích được thành nhân tử
b: Ta có: \(2x^2-7xy+3y^2+x-3y\)
\(=2x^2-6xy-xy+3y^2+x-3y\)
\(=2x\left(x-3y\right)-y\left(x-3y\right)+\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2x-y+1\right)\)
a) 6x² + 7xy + 2y²
= 6x² + 4xy + 3xy + 2y²
= (6x² + 4xy) + (3xy + 2y²)
= 2x(3x + 2y) + y(3x + 2y)
= (3x + 2y)(2x + y)
b) x² - y² + 10x - 6y + 16
= x² + 10x + 25 - y² - 6y - 9
= (x² + 10x + 25) - (y² + 6y + 9)
= (x + 5)² - (y + 3)²
= (x + 5 - y - 3)(x + 5 + y + 3)
= (x - y + 2)(x + y + 8)
c) 4x⁴ + y⁴
= 4x⁴ + 4x²y² + y⁴ - 4x²y²
= (2x² + y²)² - (2xy)²
= (2x² + y² - 2xy)(2x² + y² + 2xy)
a) (a + b)2 – m2 + a + b – m = (a + b + m)(a + b – m) + (a + b – m)
= (a + b – m)(a + b + m + 1)
b) x3 + 6x2 + 12x – 8 = (x – 2)3
Cách khác: x3 + 6x2 + 12x – 8 = (x3 – 8) - 6x2 + 12x
= (x – 2)(x2 + 2x + 2) + 6x(x – 2) = (x – 2)( x2 + 2x + 2 – 6x) = (x – 2)3
c) x2 – 7xy + 10y2 = x2 – 2xy – 5xy + 10y2 = x(x – 2y) – 5y(x – 2y)
= (x – 2y)(x – 5y)
d) x4 + 2x3 - 4x – 4 = (x4 – 4) + (2x3 – 4x) = (x2 – 2)(x2 + 2) + 2x(x2 – 2)
= (x2 – 2)(x2 + 2 + 2x) = (x - √2)( x + √2)( x2 + 2 + 2x)
học tốt
a,(a+b+m)(a+b-m)+(a+b-m)
=(a+b-m)(a+b+m+1)
...........mấy câu kia tương tự:>
hc tốt
a) \(3x^2-6xy+3y^2-12x^2=3\left(x^2-2xy+y^2\right)-12x^2=3\left(x-y\right)^2-12x^2=3\left[\left(x-y\right)^2-4x^2\right]=3\left(x-y-2x\right)\left(x-y+2x\right)=3\left(-x-y\right)\left(3x-y\right)\)
b)\(3x^2y^2-6x^2y^3+12x^2y^2=3x^2y^2\left(1-2y+4\right)=3x^2y^2\left(5-2y\right)\)
c) \(3x^2-3y^2+12x-12y=3\left(x^2-y^2\right)+12\left(x-y\right)=3\left(x-y\right)\left(x+y+4\right)\)
a: \(3x^2-6xy+3y^2-12x^2\)
\(=3\left(x^2-2xy+y^2-4x^2\right)\)
\(=3\left[\left(x-y\right)^2-4x^2\right]\)
\(=3\left(x-y-2x\right)\left(x-y+2x\right)\)
\(=3\left(-x-y\right)\left(3x-y\right)\)
b: \(3x^2y^2-6x^2y^3+12x^2y^2\)
\(=3x^2y^2\left(1-2y+4\right)\)
\(=3x^2y^2\left(-2y+5\right)\)
c: Ta có: \(3x^2-3y^2+12x-12y\)
\(=3\left(x-y\right)\left(x+y\right)+12\left(x-y\right)\)
\(=3\left(x-y\right)\left(x+y+4\right)\)
\(x^3+y^3+3y^2+3y+1\\ =x^3+\left(y+1\right)^3\\ =\left(x+y+1\right)\left[x^2-x\left(y+1\right)+\left(y+1\right)^2\right]\\ =\left(x+y+1\right)\left(x^2-xy-x+y^2+2y+1\right)\\ =\left(x+y+1\right)\left(x^2+y^2+2y+1-xy-x\right)\)
3x2 + 6xy + 3y2 – 3z2
= 3.(x2 + 2xy + y2 – z2)
(Nhận thấy xuất hiện x2 + 2xy + y2 là hằng đẳng thức nên ta nhóm với nhau)
= 3[(x2 + 2xy + y2) – z2]
= 3[(x + y)2 – z2]
= 3(x + y – z)(x + y + z)
7 x - 6 x 2 - 2 = 4 x - 6 x 2 - 2 + 3 x = 4 x - 6 x 2 - 2 - 3 x = 2 x 2 - 3 x - 2 - 3 x = 2 x - 1 2 - 3 x
\(=6x^2-9xy+2xy-3y^2\)
=3x(2x-y)+y(2x-y)
=(2x-y)(3x+y)