K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

\(c)\) \(\left|2x-1\right|-2x=3\)

\(\Leftrightarrow\)\(\left|2x-1\right|=2x+3\)

Ta có : \(\left|2x-1\right|\ge0\)

\(\Rightarrow\)\(2x+3\ge0\)\(\Rightarrow\)\(2x\ge-3\)\(\Rightarrow\)\(x\ge\frac{-3}{2}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=2x+3\\2x-1=-2x-3\end{cases}\Leftrightarrow\orbr{\begin{cases}2x-2x=3+1\\2x+2x=-3+1\end{cases}}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}0=4\\4x=-2\end{cases}\Leftrightarrow\orbr{\begin{cases}0=4\left(loai\right)\\x=\frac{-1}{2}\left(tm\right)\end{cases}}}\)

Vậy \(x=\frac{-1}{2}\)

Chúc bạn học tốt ~ 

21 tháng 3 2018

\(b)\) \(3\left(2x-1\right)-\left|x-5\right|=7\)

\(\Leftrightarrow\)\(3\left(2x-1\right)-7=\left|x-5\right|\)

\(\Leftrightarrow\)\(6x-3-7=\left|x-5\right|\)

\(\Leftrightarrow\)\(\left|x-5\right|=6x-10\)

Ta có : \(\left|x-5\right|\ge0\)

\(\Rightarrow\)\(6x-10\ge0\)\(\Rightarrow\)\(6x\ge10\)\(\Rightarrow\)\(x\ge\frac{5}{3}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=6x-10\\x-5=10-6x\end{cases}\Leftrightarrow\orbr{\begin{cases}6x-x=-5+10\\x+6x=10+5\end{cases}}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}5x=5\\7x=15\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(loai\right)\\x=\frac{15}{7}\left(tm\right)\end{cases}}}\)

Vậy \(x=\frac{15}{7}\)

Chúc bạn học tốt ~ 

a: Trường hợp 1: x<-2

Pt sẽ là -x-2+3-2x=5

=>-3x+1=5

=>-3x=4

hay x=-4/3(loại)

Trường hợp 2: -2<=x<3/2

Pt sẽ là x+2+3-2x=5

=>5-x=5

hay x=0(nhận)

Trường hợp 2: x>=3/2

Pt sẽ là x+2+2x-3=5

=>3x-1=5

hay x=2(nhận)

b: \(\Leftrightarrow\left|x-5\right|=6x-3-7=6x-10\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{5}{3}\\\left(6x-10-x+5\right)\left(6x-10+x-5\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{5}{3}\\\left(5x-5\right)\left(7x-15\right)=0\end{matrix}\right.\Leftrightarrow x=\dfrac{15}{7}\)

c: \(\Leftrightarrow\left|2x-1\right|=2x+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{3}{2}\\\left(2x+3+2x-1\right)\left(2x+3-2x+1\right)=0\end{matrix}\right.\Leftrightarrow x=-\dfrac{1}{2}\)

d: =>|3x-2|=3x-2

=>3x-2>=0

hay x>=2/3

7 tháng 9 2016

\(15-2\left|x+5\right|=2x-30\) 

\(\Leftrightarrow-2\left|x+5\right|=2x-45\)            (1)

+)TH1: x>= -5  thì (1) trở thành:

-2(x+5)=2x-45 <=> -2x-10=2x-45 <=> -4x=-35  <=> x=35/4(tm)

+)TH2: x<-5 trhif pt(1) trở thành:

2(x+5)=2x-45 <=> 2x+10=2x-45 <=> 0x=-55 (vô nghiệm)

Vậy x=35/4

 

7 tháng 9 2016

15 - 2 / x+ 5/ = 2x -30

=> 2 / x + 5 / = 15 -2x -30 = -15 -2x 

=>          2( x + 5 ) = -15 -2x   => 2x + 10 = -15 -2x =>   10 +15 =  -2x -2x => ..........

         và   2( -x - 5 ) = -15 -2x  =>  ................................

cứ như thế bạn làm tiếp nhé

1 tháng 7 2021

1) Ta có \(\hept{\begin{cases}\left|x\right|\ge0\forall x\\\left|y-2\right|\ge0\forall y\end{cases}}\Leftrightarrow\left|x\right|+\left|y-2\right|\ge0\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

Vậy x  = 0 ; y = 2

Thay x = 0 ; y = 2 vào B 

=> B = 2.0 - 5.2 + 7.0.2 = -10

Vậy B = -10

1 tháng 7 2021

Bài 2:

\(a)\)

\(A=\left|x-2021\right|+5\)

Ta có:

\(\left|x-2021\right|\ge0\Rightarrow\left|x-2021\right|+5\ge5\)

Dấu '' = '' xảy ra khi:

 \(x-2021=0\)

\(\Leftrightarrow x=2021\)

Vậy \(MinA=5\Leftrightarrow x=2021\)

\(b)\)

\(B=\left|x-2\right|+\left|x-5\right|\)

\(B=\left|x-2\right|+\left|x-5\right|\ge\left|x-2+5-x\right|=\left|3\right|=3\)

Dấu '' = '' xảy ra khi: 

\(\left(x-2\right)\left(5-x\right)\ge0\)

\(\Leftrightarrow2\le x\le5\)

Vậy \(MinB=3\Leftrightarrow2\le x\le5\)

11 tháng 8 2016

b)  |2x - 6| + |x + 2| = 8

1)Với \(x< -2\) ta được: -(2x - 6) + [-(x + 2)] = 8  => -2x + 6 - x - 2 = 8  => -3x = 8 + 2 -6 = 4  => x = \(\frac{-4}{3}\)(loại vì \(\frac{-4}{3}>-2\))

2)Với \(-2\le x< 3\)ta được: (2x - 6) + [-(x + 2)]  => 2x - 6 - x - 2 = 8  => x = 8 + 6 +2  => x = 16 (loại vì 16 > 3)

3)Với \(x\ge3\) ta được: (2x - 6) + (x + 2) = 8  => 2x - 6 + x + 2 = 8  => 3x = 8 + 6 - 2 = 12 => x =  4(chọn)

Vậy x = 4

c) |2x - 1| +  |2x - 5| = 4

1)Với \(x\le0,5\)ta được: -(2x - 1) + [-(2x - 5)] = 4  => -2x + 1 - 2x + 5 = 4  => -4x = 4 - 1 - 5  => -4x = -2  => x = \(0,5\)(loại)

2)Với \(0,5< x< 2,5\) ta được: 2x - 1 + [-(2x - 5)] = 4  => 2x -1 - 2x + 5 = 4 => 0x = 4 +1 -5  => 0x = 0  => x\(\in R\)

3)Với \(x\ge2,5\)ta được: 2x - 1 + 2x - 5 = 4  => 4x = 4 + 1 + 5  => 4x = 10  => x = \(2,5\) (chọn)

Vậy x = 0,5 hoặc x = 2,5

d)  |x + 5| + |x + 3| = 9

1)Với \(x< -5\)ta được: -(x + 5) + [-(x + 3)] = 9  => -x - 5 - x - 3 = 9  => -2x = 9 + 5 + 3  => -2x = 17  => x = -8,5(chọn)

2)Với \(-5\le x< -3\) ta được: x + 5 + [-(x + 3)] = 9  => x + 5 -x - 3 = 9  => 0x = 9 - 5 + 3  => 0x = 7(vô lý)

3)Với \(x\le-3\)ta được: x + 5 + x + 3 = 9  => 2x = 9 - 5 - 3  => 2x = 1  => x = 0,5(chọn)

Vậy x = -8,5 hoặc x = 0,5

12 tháng 8 2016

a) 7x -  |2x - 4| = 3x + 12  => 7x - (2x - 4) = 3x + 12 khi (2x + 4)\(\ge\)0 => x\(\ge\)-0,5 hoặc 7x - [-(2x - 4)] = 3x + 12 khi (2x + 4) < 0 => x < -0,5

1)Với x \(\ge\)-0,5 thì 7x - (2x - 4) = 3x +12  => 7x - 2x + 4 = 3x + 12  => 7x -2x -3x = -4 +12 => 2x = 8  => x = 4(chọn vì 4 > -0,5)

2)Với x < -0,5 thì 7x - [-(2x - 4)] = 3x +12  => 7x + 2x - 4 = 3x + 12  => 7x +2x - 3x = 4 + 12  => 6x = 16  => x = \(\frac{8}{3}\)(loại vì \(\frac{8}{3}\)> -0,5 )

Vậy x = 4