Cho tam giác ABC vuông tại B. Tia phân giác của góc A cắt cạnh BC tại D . Trên cạnh AC lấy điểm E sao cho AE =AB. a) Chứng minh rằng rABD = rAED. b) So sánh góc BAC và góc EDC. c) Trên tia đối của tia BA lấy điểm F sao cho BF = EC. Chứng minh ba điểm E, D, F thẳng hàng.
-giúp mình với
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
19 tháng 12 2021
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
12 tháng 8 2016
minh chi goi y cho ban thoi nha
neu noi Dvoi E ta se duoc tam giac ADE.ban phai chung minh cho gocE bang 90 do sau do di xet hai tam giac ABD vaAED
nho k cho minh nhe
17 tháng 6 2023
a: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
b: DA=DM
=>góc DAM=góc DMA
18 tháng 12 2023
a: Xét ΔBAM và ΔBDM có
BA=BD
\(\widehat{ABM}=\widehat{DBM}\)
BM chung
Do đó: ΔBAM=ΔBDM
=>\(\widehat{BAM}=\widehat{BDM}\)
mà \(\widehat{BAM}=90^0\)
nên \(\widehat{BDM}=90^0\)
b: Ta có; ΔBAM=ΔBDM
=>MA=MD
Xét ΔMAE vuông tại A và ΔMDC vuông tại M có
MA=MD
AE=DC
Do đó: ΔMAE=ΔMDC
=>\(\widehat{AME}=\widehat{DMC}\)
mà \(\widehat{AME}+\widehat{EMC}=180^0\)(hai góc kề bù)
nên \(\widehat{DMC}+\widehat{EMC}=180^0\)
=>\(\widehat{DME}=180^0\)
=>D,M,E thẳng hàng
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED