Cho dãy số 49 + 4489 + 444889 + ... . Dãy số trên được xây dựng bằng cách thêm số 48 vào giữa số đứng liền trước nó. Chứng minh cá số hạng của dãy số trên đều là số chính phương .
GIẢI BÀI BẢN RA HỘ MÌNH NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
http://thuvienso.edu.vn/mot-so-dang-bai-tap-ve-so-chinh-phuong
http://thuvienso.edu.vn/mot-so-dang-bai-tap-ve-so-chinh-phuong
Mik chỉ bít rằng 49 là số chính phương vì nó =72.
Mik nghĩ rằng từ đây bạn có thể suy ra các số còn lại .
Học tốt #
Thử vài trường hợp đầu:
16= 42
1156 = 342
111556 = 3342
Như vậy có thể gợi ý:
11...1155..56 = 33..342 (ở đây có n+1 chữ số 1, n chữ số 5 và n chữ số 3)
Ta có nhận xét:
11..11 11..11 (2n + 2 chữ số 1)
+ 44..44 (n + 1 chữ số 4)
1
11..11155..56 (n+1 chữ số 1, n chữ số 5 và 1 chữ số 6)
Vậy 11..11155..56 = 111...1 + 44..44 + 1
= \(\frac{99..99}{9}+4\frac{9..9}{9}+1\)
= \(\frac{10^{2n+2}}{9}+4\frac{10^{n+1}}{9}+1\)
= \(\frac{10^{2n+2}-1}{9}+4\frac{10^{n+1}-1}{9}+1\)
= \(\frac{10^{2n+2}+4.10^{n+1}+4}{9}\)
=\(\frac{\left(10^{n+1}\right)^2+4.10^{n+1}+2^2}{9}\)
= \(\frac{\left(10^{n+1}+2\right)^2}{9}\)
=\(\left(\frac{10^{n+1}+2}{3}\right)^2\)
= \(\left(\frac{100..02}{3}\right)^2\)
= 333...342