K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2016

A = x2 + y2 + xy - 5x - 4y + 2002 
= x2 + x(y - 5) + y2 - 4y + 2002 
= x2 + 2.x.(y - 5)/2 + (y - 5)2/4 - (y - 5)2/4 + y2 - 4y + 2002 
= [x + (y - 5)/2]2 + 3/4*y2 - 3y/2 + 7983/4 
>= 3/4*y2 - 3y/2 + 7983/4 (hàm bậc 2,min tại y = 1) 
= 3/4 - 3/2 + 7983/4 = 1995 
vậy minA = 1995,dấu = xảy ra khi x + y - 5 = 0 và y = 1 
<> x = 4 và y = 1

10 tháng 3 2016

x2+(y−5)x+y2−4y+2002−A=0

Δ=(y−5)^2−4(y^2−4y+2002−A)
=y^2−10y+25−4y^2+16y−8008+4A
=−3(y−1)^2−7980+4A≥0

→4A−7980≥0

→A≥1995

Dấu bằng khi y=1;x=2

1 tháng 3 2016

2A= (x2 + y2 + 2xy) + (x2 -10x + 25) + (y2 – 8y + 16) +2002 – (16+25) 
2A= (x + y)2 + (x - 5)2 + (y - 4)2 + 1961. 
Từ biểu thức tổng của các số dương trên ta so sánh từng cặp giá trị (x;y) sao cho các số dương trên nhận giá trị bằng 0 ta có các cặp như sau: (0;0); (0;4); (5;0); (5;4) ta tìm GTNN của A là ½(1961+25+16)

12 tháng 11 2021

B

12 tháng 11 2021

b

 

23 tháng 6 2019

Ta có

K   =   x 2   –   6 x   +   y 2   –   4 y   +   6     =   x 2   –   2 x . 3   +   9   +   y 2   –   2 . y . 2   +   4   –   7     =   ( x   –   3 ) 2   +   ( y   –   2 ) 2   –   7

Vì ( x   –   3 ) 2   ≥   0 ;   ( y   –   2 ) 2   ≥   0 ; Ɐx; y nên ( x   –   3 ) 2   +   ( y   –   2 ) 2 – 7 ≥ -7

Dấu “=” xảy ra khi  ó   x − 3 2 = 0 và  y − 2 2 = 0 hay x = 3 và y = 2

Vậy giá trị nhỏ nhất của K là -7 khi x = 3; y = 2

Đáp án cần chọn là: C

23 tháng 10 2021

\(a,=3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)

Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)

\(b,=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(c,=\left(x^2-2xy+y^2\right)+x^2+1=\left(x-y\right)^2+x^2+1\ge1\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=0\end{matrix}\right.\Leftrightarrow x=y=0\)

AH
Akai Haruma
Giáo viên
11 tháng 1 2021

Lời giải:

a) 

$A=4x^2+4x+11=(4x^2+4x+1)+10=(2x+1)^2+10\geq 10$

Vậy $A_{\min}=10$. Giá trị này đạt tại $(2x+1)^2=0$

$\Leftrightarrow x=-\frac{1}{2}$

b) 

$C=x^2-2x+y^2-4y+7=(x^2-2x+1)+(y^2-4y+4)+2$

$=(x-1)^2+(y-2)^2+2\geq 2$

Vậy $C_{\min}=2$. Giá trị này đạt tại $(x-1)^2=(y-2)^2=0$

$\Leftrightarrow x=1; y=2$

1 tháng 3 2016

A=x2+y2+xy-5x-4y+2002

2A=x2+2xy+y2+x2-10x+25+y2-8y+16+1961

2A=\(\left(x+y\right)^2+\left(x-5\right)^2+\left(y-4\right)^2+1961\ge1961\)

27 tháng 3 2017

a) Từ M = x − 3 2 2 + 31 4 ≥ 31 4 ⇒ M min = 31 4 ⇔ x = 3 2 .  

b) Ta có N = ( x   +   2 y ) 2   +   ( y   –   2 ) 2   +   ( x   +   4 ) 2   –   120   ≥   -   120 .

Tìm được N min  = -120 Û x = -4 và y = 2.

12 tháng 11 2021

\(x^2+y^2-2x+4y+8=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+3\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+3\ge3\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

Vậy GTNN là 3 khi x=1 và y=-2

=>Chọn B

12 tháng 11 2021

\(x^2+y^2-2x+4y+8=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+3=\left(x-1\right)^2+\left(y+2\right)^2+3\ge3\)

Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)