Cho tam giác ABC có độ dài ba cạnh BC, AC ,AB lần lượt là a, b, c thỏa mãn \(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{a+c}=\frac{a+b+c}{2}\) biết a=2cm. Giá trị của b =?
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
25 tháng 9 2017
Kẽ phân giác AD của tam giác ABC, \(AD=l\)
Ta có:
\(S_{ABC}=S_{ABD}+S_{ACD}=\frac{c.l.sin\frac{A}{2}}{2}+\frac{b.l.sin\frac{A}{2}}{2}=\frac{l}{2}.sin\frac{A}{2}.\left(b+c\right)\left(1\right)\)
Ta lại có:
\(\frac{a.l}{2}\ge\frac{a.h_a}{2}=S_{ABC}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a.l}{2}\ge\frac{l}{2}.sin\frac{A}{2}.\left(b+c\right)\)
\(\Leftrightarrow sin\frac{A}{2}\le\frac{a}{b+c}\le\frac{a}{2\sqrt{bc}}\)
mối ràng buộc giữa a,b,c vì nếu a,b,c thuộc R và ko có mối liên hệ a,b,c thì ko có GTNN của nó
Đặt A=ab/(a+b) + bc/(b+c) + ac/(a+c)
Trước hết ta xét bất đẳng thức sau với x,y >0
(x+y)≥2√xy <=> (x+y)² ≥ 4xy <=> (x+y)≥(4xy)/(x+y)
ngịch đảo 2 vế ta có 1/(x+y) ≥ ¼(1/x+1/y)
Áp dụng cho bài toán ta có
ab/(a+b)≥¼ ab(1/a+1/b)=¼(a+b)
bc/(b+c) ≥¼(c+d)
ac/(a+c)≥¼(a+c)
Cộng 2 vế ta có A ≥¼(a+b+c+d+a+c)=½(a+b+c)
Nếu bạn cho a+b+c=m thì ta có mình A=m/2