Từ điểm A nằm ngoài đường tròn (O;R) với OA > 2R, kẻ các tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của đường tròn (O); AD cắt đường tròn (O) tại E (E khác D).
a) Chứng minh: OA BC tại H và 4 điểm A, B, O, C cùng thuộc đường tròn
b) Chứng minh: CD // OA và AH.AO= AE.AD
c) Gọi I là trung điểm của HA. Chứng minh ABI = BDH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc với BC
=>OH*OA=OB^2=R^2
b: góc ABM=góc ACM
góc HBM=90 độ-góc OMB=90 độ-góc OBM=góc ABM
=>BM là phân giác của góc ABH
a: Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
c: Xét (O) có
ΔBED nội tiếp
BD là đường kính
Do đó: ΔBED vuông tại E
Xét ΔBAD vuông tại B có BE là đường cao
nên \(AE\cdot AD=AB^2\left(1\right)\)
Xét ΔOBA vuông tại B có BH là đường cao
nên \(AH\cdot AO=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)
hay \(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
Xét ΔAEH và ΔAOD có
\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)
\(\widehat{HAE}\) chung
Do đó: ΔAEH\(\sim\)ΔAOD
Suy ra: \(\widehat{AHE}=\widehat{ADO}=\widehat{BDE}\)
Do \(OB=OE=R\Rightarrow\Delta OBE\) cân tại O
Mà \(OH\perp BE\) (giả thiết) \(\Rightarrow OH\) là đường cao đồng thời là trung trực của BE
Hay OA là trung trực của BE
\(\Rightarrow AB=AE\)
Xét hai tam giác OAB và OAE có: \(\left\{{}\begin{matrix}OB=OE=R\\AB=AE\left(cmt\right)\\OA\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAB=\Delta OAE\left(c.c.c\right)\)
\(\Rightarrow\widehat{AEO}=\widehat{ABO}=90^0\Rightarrow AE\) là tiếp tuyến của (O)
a) Xét tứ giác OBAC có
\(\widehat{OBA}\) và \(\widehat{OCA}\) là hai góc đối
\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: OBAC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Vì AM và AN là 2 tiếp tuyến của đường tròn tâm O
=> \(\left\{{}\begin{matrix}AM\perp OM\\AN\perp ON\end{matrix}\right.\) => \(\left\{{}\begin{matrix}GócAMO=90\\GócANO=90\end{matrix}\right.\)
Xét từ giác AMON có :
AMO + ANO = 90 + 90 = 180
Mà 2 góc này ở vị try đối diện nhau
=> Tứ giác AMON nội tiếp < đpcm>
a: góc ABO+góc ACO=180 độ
=>ABOC nội tiếp
b: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC tại H
=>AH*AO=AB^2
Xét ΔABE và ΔADB có
góc ABE=góc ADB
góc BAE chung
=>ΔABE đồng dạng với ΔADB
=>AB^2=AE*AD=AH*AO
a: Xét tứ giác ABOC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: ABOC là tứ giác nội tiếp