2012/1.2+2012/2.3+...+2012/2011.2012 = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1/2 - 1/3 + 1/3 -1/4 + ......... +1/2011 -1/2012
S= 1/2 - 1/2012 = 1005/2012
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...-\frac{1}{2012}\)
\(S=\frac{1}{2}+0+0+0+...-\frac{1}{2012}\)
\(S=\frac{1}{2}-\frac{1}{2012}\)
\(S=\frac{1005}{2012}\)
\(A=\frac{2012}{1}\cdot\frac{1005}{2012}\)
\(A=1005\)
\(\Leftrightarrow x\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\right)=2011\)
\(\Leftrightarrow x\cdot\dfrac{2011}{2012}=2011\)
hay x=2012
\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\right)x=2011\)
\(\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\right)x=2011\)
\(\left(\dfrac{1}{1}-\dfrac{1}{2012}\right)x=2011\)
\(\dfrac{2011}{2012}x=2011\)
\(x=2012\)
b) \(\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)+5=3x+2\left(\sqrt{2x^2+5x+3}-6\right)+12-16\)
\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)=3\left(x-3\right)+2\left(\sqrt{2x^2+5x+3}-6\right)\)
\(\Leftrightarrow\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x+1}+2}-3\left(x-3\right)-\frac{2\left(x-3\right)\left(2x+11\right)}{\sqrt{2x^2+5x+3}+6}=0\Leftrightarrow x-3=0\Leftrightarrow x=3.\)
\(\frac{1}{1.2}+\frac{1}{3.4}+....+\frac{1}{99.100}=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{100}\right)\)
\(=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-....-\frac{1}{50}=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
=> \(2013x.\left(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)=2013x.\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\)
=> \(2013x.\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)=2012.\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right)\Rightarrow2013x=2012\Rightarrow x=\frac{2012}{2013}\)
Vậy \(x=\frac{2012}{2013}\)
p/s: --trình bày sai sót mong bỏ qua
\(=2012.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\right)\)
\(=2012.\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{2012-2011}{2011.2012}\right)\)
\(=2012.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\right)\)
\(=2012.\left(1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{2011}+\frac{1}{2011}\right)-\frac{1}{2012}\right)\)
\(=2012.\left(1-\frac{1}{2012}\right)=\frac{2012.2011}{2012}=2011\)