K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

BĐT cần chứng minh tương đương với:

\(\left(\dfrac{a}{b^2}-\dfrac{2}{b}+\dfrac{1}{a}\right)+\left(\dfrac{b}{a^2}-\dfrac{2}{a}+\dfrac{1}{b}\right)\ge4\left(\dfrac{1}{a}+\dfrac{1}{b}\right)-\dfrac{16}{a+b}\)

\(\Leftrightarrow\left(a+b\right)\left(\dfrac{1}{a}-\dfrac{1}{b}\right)^2\ge\dfrac{4\left(a-b\right)^2}{ab\left(a+b\right)}\)

\(\Leftrightarrow\dfrac{\left(a+b\right)\left(a-b\right)^2}{a^2b^2}\ge\dfrac{4\left(a-b\right)^2}{ab\left(a+b\right)}\).

\(\Leftrightarrow\left(a-b\right)^2\left[\dfrac{a+b}{a^2b^2}-\dfrac{4}{ab\left(a+b\right)}\right]\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^4}{a^2b^2\left(a+b\right)}\ge0\) (luôn đúng).

 

28 tháng 2 2021

`a/b^2+b/a^2+16/(a+b)>=5(1/a+1/b)`

`<=>a/b^2-1/b+b^2-1/a+4(4/(a+b)-1/a-1/b)=0`

`<=>(a-b)/b^2+(b-a)/a^2+4((4ab-(a+b)^2)/(ab(a+b)))>=0`

`<=>(a^2(a-b)-b^2(a-b))/(a^2b^2)-(4(a-b)^2)/(ab(a+b))>=0`

`<=>(a-b)^2[(a+b)^2-4ab]>=0`

`<=>(a-b)^2(a^2-2ab+b^2)>=0`

`<=>(a-b)^2(a-b)^2>=0`

`<=>(a-b)^4>=0` luôn đúng.

Dấu "=" xảy ra khi `a=b`

NV
18 tháng 9 2021

\(\dfrac{a^3}{\left(b+1\right)\left(c+2\right)}+\dfrac{b+1}{12}+\dfrac{c+2}{18}\ge3\sqrt[3]{\dfrac{a^3\left(b+1\right)\left(c+2\right)}{216\left(b+1\right)\left(c+2\right)}}=\dfrac{a}{2}\)

Tương tự: \(\dfrac{b^3}{\left(c+1\right)\left(a+2\right)}+\dfrac{c+1}{12}+\dfrac{a+2}{18}\ge\dfrac{b}{2}\)

\(\dfrac{c^3}{\left(a+1\right)\left(b+2\right)}+\dfrac{a+1}{12}+\dfrac{b+2}{18}\ge\dfrac{c}{2}\)

Cộng vế:

\(VT+\dfrac{5}{36}\left(a+b+c\right)+\dfrac{7}{12}\ge\dfrac{1}{2}\left(a+b+c\right)\)

\(\Rightarrow VT\ge\dfrac{13}{36}\left(a+b+c\right)-\dfrac{7}{12}\ge\dfrac{13}{36}.3\sqrt[3]{abc}-\dfrac{7}{12}=\dfrac{1}{2}\) (đpcm)

NV
20 tháng 1 2019

Nhìn qua đã biết là đề sai rồi bạn

Cho \(a,b,c\) các giá trị lớn ví dụ \(a=b=c=2\) là thấy sai ngay

NV
30 tháng 8 2021

\(3=ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\Rightarrow abc\le1\)

\(\dfrac{1}{1+a^2\left(b+c\right)}=\dfrac{1}{1+a\left(ab+ac\right)}=\dfrac{1}{1+a\left(3-bc\right)}=\dfrac{1}{1+3a-abc}=\dfrac{1}{3a+\left(1-abc\right)}\le\dfrac{1}{3a}\)

Tương tự và cộng lại:

\(VT\le\dfrac{1}{3a}+\dfrac{1}{3b}+\dfrac{1}{3c}=\dfrac{ab+bc+ca}{3abc}=\dfrac{3}{3abc}=\dfrac{1}{abc}\)

20 tháng 3 2022

Bất đẳng thức sai, chẳng hạn với \(a=b=10^{-4};c=0,5-a-b\).

NV
26 tháng 8 2021

Tham khảo:

Cho abc=1CMR\(\dfrac{a+3}{\left(a+1\right)^2}+\dfrac{b+3}{\left(b+1\right)^2}+\dfrac{c+3}{\left(c+1\right)^2}\ge3\) - Hoc24

NV
15 tháng 3 2022

\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b+2}{36}+\dfrac{c+3}{48}\ge3\sqrt[3]{\dfrac{a^3\left(b+2\right)\left(c+3\right)}{1728\left(b+2\right)\left(c+3\right)}}=\dfrac{a}{4}\)

Tương tự: \(\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c+2}{36}+\dfrac{a+3}{48}\ge\dfrac{b}{4}\)

\(\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}+\dfrac{a+2}{36}+\dfrac{b+3}{48}\ge\dfrac{c}{4}\)

Cộng vế:

\(P+\dfrac{7\left(a+b+c\right)}{144}+\dfrac{17}{48}\ge\dfrac{a+b+c}{4}\)

\(\Rightarrow P\ge\dfrac{29}{144}\left(a+b+c\right)-\dfrac{17}{48}\ge\dfrac{29}{144}.3\sqrt[3]{abc}-\dfrac{17}{48}=\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=1\)