3/2 + 7/6 + 13/12 + 21/20 + ...... + 91/90 + 111/110
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 1/110 + 1 + 1/90 + ... + 1 + 1 /2
A = 10 + 1/1.2+ 1 /2.3 + ... + 1/9.10 + 1/10.11
A = 10 + 1/1 - 1/2 + 1 /2 - 1/3 + ... + 1/9 - 1/10 + 1/10 - 1/11
A = 10 + 1/1 - 1/11
A = 10 + 10/11
A = 120/11
A = \(\frac{111}{110}+\frac{91}{90}+\frac{73}{72}+...+\frac{13}{12}+\frac{7}{6}+\frac{3}{2}\)
A = \(\left(\frac{1}{2}+1\right)+\left(\frac{1}{6}+1\right)+\left(\frac{1}{12}+1\right)+....+\left(\frac{1}{110}+1\right)\)
A = (1 + 1 + 1 +...+ 1) + \(\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)\)
A = 10 + \(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
A = \(10+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
A = \(10+\left(1-\frac{1}{11}\right)\)
A = \(10+\frac{10}{11}\)
A = \(\frac{120}{11}\)
Gọi tổng dãy số hạng trên là A
A = 1 + \(\frac{1}{2}\)+ 1 + \(\frac{1}{6}\)+ 1 + \(\frac{1}{12}\)+ ... + 1 + \(\frac{1}{90}\)+ 1 + \(\frac{1}{110}\)
Mà từ \(\frac{1}{2}\)đén \(\frac{1}{110}\) có 10 số
A = 1 x 10 + \(\frac{1}{2}\)+( \(\frac{1}{2}\)- \(\frac{1}{3}\)) + ( \(\frac{1}{3}\)-\(\frac{1}{4}\)) + (\(\frac{1}{4}\)-\(\frac{1}{5}\)) + ... + \(\frac{1}{11}\)
A = 10 + \(\frac{1}{2}\)+ \(\frac{1}{2}\)+ \(\frac{1}{11}\)= \(\frac{112}{11}\)
\(=1+1+1+1+1+1+1+1+1+\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\)
\(=9+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
=9+9/10=99/10
A=1+1/2+1+1/6+1+1/12+...+1+1/90=
=9+1/2+1/6+1/12+...+1/90
1/2+1/6+1/12+...+1/90=
1/1x2+1/2x3+2/3x4+...+1/9x10=
\(=\dfrac{2-1}{1x2}+\dfrac{3-2}{2x3}+\dfrac{4-3}{3x4}+...+\dfrac{10-9}{9x10}=\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}=\)
\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)
\(\Rightarrow A=9+\dfrac{9}{10}=9\dfrac{9}{10}\)
\(A=\frac{3}{2}-\frac{5}{6}+\frac{13}{12}-\frac{19}{20}+\frac{31}{30}-\frac{41}{42}+\frac{57}{56}-\frac{71}{72}+\frac{91}{90}-\frac{109}{110}\)
\(\Rightarrow A=\left(1+\frac{1}{2}\right)-\left(1-\frac{1}{6}\right)+\cdot\cdot\cdot+\left(1+\frac{1}{90}\right)-\left(1-\frac{1}{110}\right)\)
\(\Rightarrow A=1+\frac{1}{2}-1+\frac{1}{6}+\cdot\cdot\cdot+1+\frac{1}{90}-1+\frac{1}{110}\)
\(\Rightarrow A=\left[\left(1-1\right)+\frac{1}{2}+\frac{1}{6}\right]+\cdot\cdot\cdot+\left[\left(1-1\right)+\frac{1}{90}+\frac{1}{110}\right]\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{90}+\frac{1}{110}\)
\(\Rightarrow A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{10}-\frac{1}{11}\)
\(\Rightarrow A=1-\frac{1}{11}\)
\(\Rightarrow A=\frac{10}{11}\)
\(2x+1+\frac{1}{6}+1+\frac{1}{12}+..+1+\frac{1}{90}=10\)
=> 2x + 8 + \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=10\)
=> 2x + \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=10-8\)
\(2x+1-\frac{1}{10}=2\)
=> 2x + \(\frac{9}{10}=2\)
=> 2x = 2 - 9/10
=>2x = 11/10
=> x = 11/10 : 2
x = 11/20