m.n vẽ hình giúp em nữa ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ACDB có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ACBD là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABCD là hình chữ nhật
a: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
b: Xét ΔBME và ΔBAC có
góc BME=góc BAC
BM=BA
góc EBM chung
=>ΔBME=ΔBAC
=>BE=BC
=>ΔBEC cân tại B
Cho em hỏi với ạ: Tại sao lại khẳng định được BA = BM thế ạ;-;?
a.
Ta có \(BD||AC\) (cùng vuông góc AB)
Áp dụng định lý Talet trong tam giác ACE: \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)
b.
Ta có \(IK||BD||AC\) \(\Rightarrow EI||AC\)
Áp dụng Talet: \(\dfrac{DC}{ED}=\dfrac{DA}{ID}\Rightarrow\dfrac{DC}{DC+ED}=\dfrac{DA}{DA+ID}\Rightarrow\dfrac{DC}{CE}=\dfrac{DA}{AI}\) (1)
Do \(BD||EK\), áp dụng Talet trong tam giác CEK: \(\dfrac{BD}{EK}=\dfrac{CD}{CE}\) (2)
Do \(BD||EI\), áp dụng Talet trong tam giác AEI: \(\dfrac{BD}{EI}=\dfrac{AD}{AI}\) (3)
Từ(1);(2);(3) \(\Rightarrow\dfrac{BD}{EK}=\dfrac{BD}{EI}\Rightarrow EK=EI\)
a: Xét ΔABC có HG//BC
nên AH/HB=AG/GC(1)
Xét ΔADC có EG//DC
nên AG/GC=AE/ED(2)
Từ (1) và (2) suy ra AH/HB=AE/ED
hay HE//BD
b: Xét ΔABD có EH//BD
nên \(\dfrac{AE}{ED}=\dfrac{AH}{HB}\)
hay \(AE\cdot HB=AH\cdot ED\)
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC
hay BCMN là hình thang