Cho tam giác ABC. Kẻ AH vuông góc với BC ( H nằm giữa B và C ) và có AH2=BH.HC. Chứng minh rằng tam giác ABC vuông tại A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)vì ABC là tam giác vuông tại A
và AH vuông góc vs BC,dồng thời là đường cao,là đg trung tuyến trong tam giác
nên H=90độ
tam giác AHC vuông tại H
a. Xét tam giác BAH và tam giác CAK
BHA= CKA=90*
BA=AC (gt)
BAH=CAK ( cùng phụ với HAC)
=> tam giác BAH=tam giác CAK( ch-gn)
=> BH=AK (2 cạnh tương ứng)
b. Gọi I là giao điểm của AM và KC
Vì BH vg AH; Ck vg AH => BH// CK
=> HBM=KCM (so le trong )
Do tam giác IMC vuông tại M => MIC+MCI= 90*
Lại có tam giác AKI vuông tại K nên KAI+KIA=90*
Mà KIA= MIC( đối đỉnh)=> MIC= AKI hay MCK= KAM => AKM = MBH
Xét tam giác BHM và tam giác AKM
BH= AK ( theo câu a)
HBM= AKM( c/m trên)
BM = AM ( AM là trung tuyến tam giác vuông)
=> tam giác BHM= tam giác AKM(cgc)
c. Theo câu b,
tam giác BHM= tam giác AKM(cgc)
=> HM= KM(2 cạnh tương ứng)
Ta có BMK+KMA=BMA=90*
Mà HMB= KMA=> BMK+HMB=90*=HMK
Xét tam giác KMH có: HMK=90*; HM=KM => tam giác KMH vuông cân tại M
1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
2 Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
Trả lời dùm minh với, mình đang vội lắm
Ai nhanh nhất mình k cho
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a/
Ta có
\(DN\perp HA\left(gt\right);BC\perp HA\left(gt\right)\) => DN//BC
\(\Rightarrow\widehat{NDB}+\widehat{CBD}=180^o\) (Hai góc trong cùng phía bù nhau)
\(\Rightarrow\widehat{NDA}+\widehat{ADB}+\widehat{ABD}+\widehat{ABC}=180^o\)
Ta có
tg ABD vuông cân tại A \(\Rightarrow\widehat{ADB}=\widehat{ABD}=45^o\Rightarrow\widehat{ADB}+\widehat{ABD}=90^o\)
\(\Rightarrow\widehat{NDA}+\widehat{ABC}=180^o-90^o=90^o\)
Xét tg vuông ABH
\(\widehat{BAH}+\widehat{ABC}=90^o\)
\(\Rightarrow\widehat{NDA}=\widehat{BAH}\)
Xét tg vuông NDA và tg vuông BAH có
\(\widehat{NDA}=\widehat{BAH}\left(cmt\right)\)
AD=AB (cạnh bên tg cân)
=> tg NDA = tg BAH (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
=> DN = AH
C/m tương tự ta cũng có tg vuông MAE = tg vuông CHA => EM=AH
b/
Ta có
\(DN\perp HA\left(gt\right);EM\perp HA\left(gt\right)\) => DN//EM
Xét tg vuông DIN và tg vuông EIM có
DN=EM (cùng bằng AH)
\(\widehat{IDN}=\widehat{IEM}\) (góc so le trong)
=> tg DIN = tg EIM (Hai tg vuông có 1 cạnh góc vuông và góc nhọn tương ứng bằng nhau)
=> DI=IE