cho tam giác ABC,D là trung điểm của AB,đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F.Chứng minh rằng:
a)BD=EF
b)tam giác ADE= tam giác EFC
c)Gọi M là trung điểm của DF.Chứng minh B,M,E thẳng hàng
Ai làm đúng mình tick nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Xét ΔABC có
D là trung điểm của AB
DE//BC
Do đó: E là trung điểm của AC
a: Xét tứ giác BDEF có
BD//EF
DE//BF
Do đó: BDEF là hình bình hành
Suy ra: BD=EF
b: Xét ΔADE và ΔEFC có
\(\widehat{ADE}=\widehat{EFC}\)
AD=EF
\(\widehat{A}=\widehat{FEC}\)
Do đó: ΔADE=ΔEFC
c: Ta có: BDEF là hình bình hành
nên Hai đường chéo BE và DF cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của DF
nên M là trung điểm của BE
hay B,M,E thẳng hàng
Câu hỏi của Joen Jungkook - Toán lớp 7 - Học toán với OnlineMath
a)Nối D với F .
Do DE // BF , EF // BD
nên tam giác DEF=tam giác FBD(g.c.g)
=>EI=DB .
Ta lại có:AD=DB
=>AD=BF
b)Ta có:AB // EF =>góc A = góc E1(đồng vị) .
AD // EF,DE // FC NÊN : góc D1=F1(cùng =góc B)
=>tam giác ADE=tam giác EFC(g.c.g)
c)tam giác ADE=tam giác EFC(câu B)
=>AE=EC(g.c.g)
xét T/G EDF và BFD
DF chung EDF=BFD (so le trong ) vì ED//CB ( gt)
EFD=BDF ( so le trong ) vì EF//AB (gt)
=> EDF=BFD ( G.C.G) => EF = BD ( 2 cạnh tương ứng ) mà DB =AD ( trung điểm D) => EF=AD ( dcpcm)
câu B) có EF=AD (CMT)
có CEF=EAC ( đồng vị ) vì EF//AB
có EFC=ADE ( cùng đồng vị với góc B ) vì EF//AB và ED//CB
=> ADE=EFC ( G.C.G)
câu C)
Có T/G ADE = EFC (CMT) => AE=EC (2 cạnh tương ứng )
xong k đúng dùm mình nha
lam so so thoi do
a,Xét tam giác CEF và tam giác FBD co
DF la canh chung
góc EDF = góc DFB ( 2 góc so le trong của DE//BC)
góc BDF = Góc EDF( 2 góc so le trong của EF//AB)
=> tam giác CEF= tam giác FBD (g.c.g)
=>EF = DB ( 2 cạnh tương ứng)
mà BD= AD ( D la trung diem cua AB)
=> EF= AD(dpm)
b,mới nghĩ đến đó thôi
hình nè lo mà cảm ơn đi, bữa sau tui nghĩ tiếp câu b chợ, mới được có 2 yếu tố
a) EF là đường trung bình => EF = 1/2 AB
mà BD = 1/2 AB => BD = EF
b) chứng minh giống trên => DE = CF
mà AD = EF và AE = EC => tam giác ADE = tam giác EFC
c) DE = BF và DE // BF
=> BDEF là hình bình hành
=> BE cắt DF tại trung điểm mỗi đường
mà M là trung điểm DF
=> M là trung điểm BE
=> B,M,E thẳng hàng
hình e tự vẽ
a) xét tg ABC có +D là tđ của AB
+DE//BC
=> DF là đg tb của tg ABC
=> F là tđ của BC
xét tg BDF và tg FEC có:
\(+\widehat{DBF}=\widehat{EFC}\) ( vì EF//BD)
\(+BF=FC\left(cmt\right)\)
\(+\widehat{DBF}=\widehat{ECF}\) ( đồng vị_
=> tg BDF = tg FEC (gcg)
=> BD=EF mà BD=DA
=> AD=EF
b)Xét tg ABC có D là tđ của AB ; DE//Bc
=> DE là đg tb của tg ABC
=> E là tđ của AC
xét tg ADE và tg EFC có :
\(+\widehat{DAE}=\widehat{FEC}\) (vì EF//AB)
\(+AE=EC\)
\(+\widehat{AED}=\widehat{ECF}\)(DE//BC)
=> tg ADE = tg EFC(gcg)
c) theo cmt AE=EC vì E là tđ Của AC
a: Xét tứ giác BDEF có
DE//BF
BD//EF
Do đó: BDEF là hình bình hành
Suy ra: FE=BD
hay FE=AD