K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2020

a, Vì G là trọng tâm của △ABC 

\(\Rightarrow AG=\frac{2}{3}AM\) \(\Rightarrow GM=\frac{1}{3}AM\) Mà MD = MG \(\Rightarrow GM+MD=\frac{1}{3}AM+\frac{1}{3}AM\)\(\Rightarrow GD=\frac{2}{3}AM\)

=> AG = GD

=> G là trung điểm của AD

=> CG là trung tuyến của tam giác ACD

b, Xét △BGM và △CDM

Có: GM = DM (gt)

    BMG = CMD (2 góc đối đỉnh)

       BM = CM (gt)

=> △BGM = △CDM (c.g.c)

=> GBM = DCM (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> BG // CD (dhnb)

22 tháng 7 2022

dhnb là gì ạ

cái này giải chắc sẽ dài lém nek!!!

645645756

2 tháng 5 2018

A B C D G M E F

a) Do G là trọng tâm tam giác ABC nên AG = 2GM. Lại có AG = GD nên GD = 2GM hay GM = DM.

Xét tam giác DMB và tam giác GMC có:

DM = GM

BM = CM

\(\widehat{DMB}=\widehat{GMC}\)   (Hai góc đối đỉnh)

\(\Rightarrow\Delta DMB=\Delta GMC\left(c-g-c\right)\)

\(\Rightarrow BD=CG\)

b) Do \(\Delta DMB=\Delta GMC\Rightarrow\widehat{FBM}=\widehat{ECM}\)

Xét tam giác FBM và tam giác ECM có:

\(\widehat{FMB}=\widehat{EMC}=90^o\)

BM = CM

\(\widehat{FBM}=\widehat{ECM}\)

\(\Rightarrow\Delta FBM=\Delta ECM\)   (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow BF=CE\left(đpcm\right)\)

25 tháng 4 2020

Câu 1: 

a, Vì AD là trung tuyến \(\Rightarrow AG=\frac{2}{3}AD\)\(\Rightarrow GD=\frac{1}{3}AD\)\(\Rightarrow GM=\frac{2}{3}AD\)(D là trung điểm MG)

\(\Rightarrow AG=GM\)

Vì BE là trung tuyến \(\Rightarrow BG=\frac{2}{3}BE\)\(\Rightarrow GE=\frac{1}{3}BE\)\(\Rightarrow GN=\frac{2}{3}BE\)(E là trung điểm GN)

\(\Rightarrow BG=GN\)

​b, Xét △ANG và △MBG

Có: AG = MG (cmt)

    AGN = MGB (2 góc đối đỉnh)

      NG = BG (cmt)

=> △ANG = △MBG (c.g.c)

=> AN = MB (2 cạnh tương ứng)

và ANG = MBG (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AN // MB (dhnb)

Câu 2: sai đề???

17 tháng 4 2015
  1. Ta có: G là trọng tâm của tam giác 

          suy ra: MG=1/2AM,suy ra: MG=1/2AG

          mà AG=GD suy ra: MG=1/2GD -> MG=MD( điều phải cm)

     2. xét tam giác BDM và tam giác CGM

        góc GMC=góc DMB (đối đỉnh); GM=MD (cm trên); BM=CM (AM là trung tuyến)

        -> tam giác BDM = tam giác CGM(c.g.c)

        -> BD=CG (dpcm)