K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2016

Tìm x biết :

$x-\frac{5}{6x}=\frac{3}{4}$x−56x =34 

2 k nha

10 tháng 3 2016

cho to đề di to giai cho

10 tháng 3 2016

Bạn ơi đầu bài đâu mà làm? =="

6 tháng 2 2017

x=3/7 nha ban !!! K TUI NHA

6 tháng 2 2017

X=3/7:5/7-3/11:5/11+3/13:5/13

+

1/2:5/4-1/3+1/4:5/6

=3/5-3/5+3/5 + 2/5-1/3+3/10

=3/5 +  11/10

=17/10

8 tháng 1 2017

\(\frac{x-1}{x^2-9x+20}+\frac{2x-2}{x^2-6x+8}+\frac{3x-3}{x^2-x-2}+\frac{4x-4}{x^2+6x+5}=0\)

\(\Leftrightarrow\frac{x-1}{\left(x-5\right)\left(x-4\right)}+\frac{2\left(x-1\right)}{\left(x-4\right)\left(x-2\right)}+\frac{3\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{4\left(x-1\right)}{\left(x+1\right)\left(x+5\right)}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{10}{x^2-25}\right)=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)  

PS: Điều kiện xác đinh bạn tự làm nhé 

24 tháng 9 2019

a) Đặt \(x-1=a\)

\(pt\Leftrightarrow\frac{13}{a}+\frac{5}{2a}=\frac{6}{3a}\)

\(\Leftrightarrow\frac{31}{2a}=\frac{6}{3a}\)

\(\Leftrightarrow\frac{31}{2}=2\)(vô lí)

Vậy pt vô nghiệm

24 tháng 9 2019

a) \(\frac{13}{x-1}+\frac{5}{2x-2}=\frac{6}{3x-3}\)

\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{6}{3\left(x-1\right)}\)

\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{2}{x-1}\)

\(\frac{31}{2\left(x-1\right)}=\frac{2}{x-1}\)

\(\frac{31}{2}=2\)

=> không có x thỏa mãn đề bài.

b) \(\frac{1}{x-1}+\frac{-2}{3}\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)

\(\frac{1}{x-1}+\frac{-2}{3}.\frac{-9}{20}=\frac{5}{2\left(1-x\right)}\)

\(\frac{1}{x-1}-\frac{-18}{60}=\frac{5}{2\left(1-x\right)}\)

\(\frac{1}{x-1}+\frac{3}{10}=\frac{5}{2\left(1-x\right)}\)

\(10\left(1-x\right)+3\left(x-1\right)\left(1-x\right)=25\left(x-1\right)\)

\(7-4x-3x^2=25x-25\)

\(7-4x-3x^2-25x+25=0\)

\(32-29x-3x^2=0\)

\(3x^2+29x-30=0\)

\(3x^2+32x-3x-32=0\)

\(x\left(3x+32\right)-\left(3x+32\right)=0\)

\(\left(3x+32\right)\left(x-1\right)=0\)

\(\orbr{\begin{cases}3x+32=0\\x-1=0\end{cases}}\)

\(\orbr{\begin{cases}x=-\frac{32}{3}\\x=1\end{cases}}\)

a: 9x=12y=8z

=>x/8=y/6=z/9

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{6}=\dfrac{z}{9}=\dfrac{x+y+z}{8+6+9}=\dfrac{46}{23}=2\)

=>x=16; y=12; z=18

b: \(6x=4y=-2z\)

nên x/3=y/2=z/-6

Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{-6}=\dfrac{x-y-z}{3-2+6}=\dfrac{27}{7}\)

=>x=81/7; y=54/7; z=-162/7

c: Đặt x/2=y/3=z/5=k

=>x=2k; y=3k; z=5k

Ta có: \(x^2+y^2-z^2=-12\)

=>\(4k^2+9k^2-25k^2=-12\)

=>k^2=1

TH1: k=1

=>x=2; y=3; z=5

TH2: k=-1

=>x=-2; y=-3; z=-5

d: Đặt x/3=y/2=z/4=k

=>x=3k; y=2k; z=4k

Ta có: xyz=192

=>24k^3=192

=>k=2

=>x=6; y=4; z=8

7 tháng 1 2017

từ đề\(\Leftrightarrow\frac{x-1}{x\left(x-4\right)-5\left(x-4\right)}+\frac{2x-2}{x\left(x-2\right)-4\left(x-2\right)}+\frac{3x-3}{x\left(x+1\right)-2\left(x+1\right)}+\frac{4x-4}{x\left(x+1\right)+5\left(x+5\right)}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{2}{\left(x-2\right)\left(x-4\right)}+\frac{3}{\left(x-2\right)\left(x+1\right)}+\frac{4}{\left(x+1\right)\left(x+5\right)}=0\right)\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{x-4}-\frac{1}{x-5}+\frac{1}{x-2}-\frac{1}{x-4}+\frac{1}{x-2}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x-5}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{2}{x-2}-\frac{2}{x-5}\right)=0\)\(\frac{2}{x-2}-\frac{2}{x-5}\)luôn khác 0 nên x-1=0 nên x=1.

Điều kiện xác định : x khác 4,5,2,-1. Do đó x=1 thỏa mãn. Vậy x=1