K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

a: Xét ΔACI và ΔMCI có

CA=CM

\(\widehat{ACI}=\widehat{MCI}\)

Do đó: ΔACI=ΔMCI

22 tháng 12 2021

a: Xét ΔACI và ΔMCI có

CA=CM

ˆACI=ˆMCIACI^=MCI^

Do đó: ΔACI=ΔMC

7 tháng 3 2023

`a)`

`Delta HAC` vuông tại `H` có :`hat(A_1)+hat(ACB)=90^0`

`hat(HAB)+hat(A_1)=90^0(kề bù)`

nên `hat(ACB)=hat(A_1)(đpcm)`

`b)`

`Delta HAC` vuông tại `H` có : `hat(A_1)+hat(ACH)=90^0` 

hay `hat(A_1)+hat(ACB)=90^0`

`Delta ABC` vuông tại `A` có : `hat(B)=hat(ACB)=90^0`

nên `hat(B)=hat(A_1)`

Có `hat(IAC)=hat(A_1)+hat(A_2)`

`=1/2 hat(BAH)+hat(B)=1/2 hat(BCA) +hat(BAH)` (1)

`hat(C_1)=1/2 hat(ACB)(CI` là p/g của `hat(ACB)` `)`(2)

Từ `(1)` và `(2)=>hat(IAC)+hat(C_1)=hat(ABH)+hat(ACB)`

mà `hat(ABH)+hat(ACB)=90^0` 

nên `hat(IAC)+hat(C_1)=90^0`

hay `hat(I_1)=90^0`

a: Xét ΔBAD và ΔBMD có

BA=BM

góc ABD=góc MBD

BD chung

=>ΔBAD=ΔBMD

b: DA=DM

=>góc DAM=góc DMA

 

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
9 tháng 1 2022

khó đọc đc

a: AC=8cm

b: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: DA=DE

c: Xét ΔADK vuông tại A và ΔEDC vuông tại E có 

DA=DE

\(\widehat{ADK}=\widehat{EDC}\)

Do đó: ΔADK=ΔEDC

Suy ra: DK=DC

hay ΔDKC cân tại D

28 tháng 3 2017

khong kho lam chac ban tu lam duoc chu

28 tháng 3 2017

k bạn ơi, giải giúp mik câu c đi bạn. mik giải đc 2 câu trên r

a) Ta có \(\widehat{BAE}=\widehat{CAE}=\widehat{\dfrac{CAB}{2}}\)

hay \(\widehat{BAE}=\widehat{FAE}\)

Xét \(\Delta ABEvà\Delta AFEcó\)

\(AB=AF\) (giả thiết )

 \(\widehat{BAE}=\widehat{FAE}\) (chứng minh trên)

\(AE\)  cạnh chung 

 \(\Rightarrow\Delta ABE=\Delta AFE\left(c-g-c\right)\)

vậy \(\Delta ABE=\Delta AFE\)

b) ta có  \(\Delta ABE=\Delta AFE\) (chứng minh câu a)

\(\Rightarrow\widehat{EBA}=\widehat{EFA}\) (2 góc tương ứng)

\(\widehat{EAB}=90độ\) \(\Rightarrow\widehat{EFA}=90độ\)

\(\Rightarrow EF\perp AC\)

vậy \(EF\perp AC\)

c)ta có  \(\Delta EAB=\Delta EFA\) (chứng minh câu a)

\(\Rightarrow EB=EF\)

Xét \(\Delta CEFvà\Delta MEBcó\)

\(EF=EB\) (chứng minh trên)

\(\widehat{CEF}=\widehat{MEB}\) (2 góc đối đỉnh )

\(CE=ME\) (giả thiết )

\(\Rightarrow\Delta CEF=\Delta MEB\left(c-g-c\right)\)

\(\Rightarrow\widehat{EBM}=\widehat{EMC}\) mà \(\widehat{EMC}=90độ\) (vì\(EF\perp AC\))

\(\Rightarrow\widehat{EBM}=90độ\) mà \(\widehat{EBA}=90độ\)

\(\Rightarrow\widehat{EBM}+\widehat{EBA}=180độ\)

\(\Rightarrow\text{B,A,M thẳng hàng}\)

vậy\(\text{B,A,M thẳng hàng}\)

 

\(\Delta ABEvà\Delta AFEcó\)\(\Rightarrow EF\perp AC\)\(\Rightarrow EF\perp AC\)

\(\Rightarrow\widehat{EBA}=\widehat{EFA}\)