Trên đường thẳng xy lần lượt lấy các điểm A,B,C,D theo thứ tự AC=BD.
a/ Chứng minh AB=CD
b/ Gọi P,Q lần lượt là trung điểm AB,CD. Chứng minh PQ=(AC+BD):2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b ta có P là trung điểm của ab -> AP=PB(1)
ta lại có Q là trung điểm của cd -> CQ =QD(2)
mà AB= CD ( cmt)(3)
từ 1, 2,3 ta có P hoặc Q = AB hoặc CD( do P và Q đều là trung điểm)
=> PQ=AC+bd/2
Giải thích các bước giải:
a/ Trong ΔABCΔABC có N,PN,P lần lượt là trung điểm của BC,ACBC,AC
⇒ NPNP là đường trung bình ΔABCΔABC
⇒ NP//AB//CDNP//AB//CD (1)
Trong ΔBCDΔBCD có N,QN,Q lần lượt là trung điểm của BC,BDBC,BD
⇒ NQNQ là đường trung bình ΔBCDΔBCD
⇒ NQ//CD//ABNQ//CD//AB (1)
Trong hình thang ABCDABCD có M,NM,N lần lượt là trung điểm của AD,BCAD,BC
⇒ MNMN là đường trung bình hình thang ABCDABCD
⇒ MN//AB//CDMN//AB//CD (3)
Từ (1) (2) và (3) suy ra: M,N,P,QM,N,P,Q thằng hàng
Hay M,N,P,QM,N,P,Q nằm trên một đường thẳng
b/ Vì MNMN là đường trung bình thang ABCDABCD
nên MN=AB+CD2=a+b2MN=AB+CD2=a+b2
Ta có: NPNP là đường trung bình ΔABCΔABC
⇒ NP=AB2=a2NP=AB2=a2
Ta lại có: NQNQ là đường trung bình ΔBCDΔBCD
⇒ NQ=CD2=b2NQ=CD2=b2
Vì a>b nên PQ=NP−NQ=a2−b2=a−b2PQ=NP−NQ=a2−b2=a−b2
c/ Ta có: MN=MP+PQ+QNMN=MP+PQ+QN
⇒a+b2=3.a−b2⇒a+b2=3.a−b2
⇒a+b=3a−3b⇒a+b=3a−3b
⇒3a−a=b+3b⇒3a−a=b+3b
⇒2a=4b⇒2a=4b
⇒a=2b⇒a=2b
Chúc bạn học tốt !!!
^HT^
a/
Ta có
MN//AB (gt)
AD//BC=> AM//BN
=> AMNB là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Ta có
AB//CD => AP//CQ mà AP = CQ (gt) => APCQ là hbh (Tứ giác có cặp cạnh đối // và = nhau là hbh)
b/
Xét hbh ABCD
OA=OC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
Xét hbh APCQ có
IA=IC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)
=> \(I\equiv O\) (đều là trung điểm AC) => M; N; I thẳng hàng
c/ Do \(I\equiv O\) (cmt) => AC; MN; PQ đồng quy tại O