giai pt : (6x+7)2 (3x+4)(x+1)=6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3x + 18 = 0
<=> 3*(x+6)=0
<=> x+6=0
<=> x=-6
Vậy S={-6}
6x-7=3x+2
<=> 6x - 3x= 2+7
<=> 3x=9
<=> x=3
Vậy S={ 3}
c) mk ko hỉu rõ đề
a) \(3x^2+x-4=0\)
\(\Leftrightarrow\)\(3x^2-3x+4x-4=0\)
\(\Leftrightarrow\)\(3x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=-\frac{4}{3}\end{cases}}\)
Vậy..
b) \(2x^2-x-28=0\)
\(\Leftrightarrow\)\(\left(x-4\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=4\\x=-3.5\end{cases}}\)
Vậy...
c) \(6x^2-x-7=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(6x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\\x=\frac{7}{6}\end{cases}}\)
Vậy....
d) \(3x^2-5=0\)
\(\Leftrightarrow\)\(3x^2=5\)
\(\Leftrightarrow\)\(x^2=\frac{5}{3}\)
\(\Leftrightarrow\)\(x=\pm\sqrt{\frac{5}{3}}\)
Vậy...
a) Gần giống cho nó giống luôn.
cần thêm (-x^3+2x^2-x) là giống
\(\left(x-1\right)^4+x^3-2x^2+x=\left(x-1\right)^4+x\left(x^2-2x+1\right)=\left(x-1\right)^4+x\left(x-1\right)^2\)
\(\left(x-1\right)^2\left[\left(x-1\right)^2+x\right]\)
\(\left[\begin{matrix}x-1=0\Rightarrow x=0\\\left(x-1\right)^2+x=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\end{matrix}\right.\)
Nghiệm duy nhất: x=1
6x+7)².(3x+4)(x+1) = 6
<=> (6x+7)².(6x+8)(6x+6) = 12*6
đặt t = 6x+7, ta có ptrình: t².(t+1)(t-1) = 72 <=> t².(t²-1) = 72
<=> (t²)² - t² - 72 = 0 <=> t² = -8 (loại), t² = 9 <=> t = -3 hoặc t = 3
+ t = 3 => 6x+7 = 3 => x = -2/3
+ t = -3 => 6x+7 = -3 => x = -5/3
vậy tập nghiệm là {-2/3, -5/3}
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
Đặt \(2x^2+3x=t\)ta có :
\(2\left(t+\frac{7}{2}\right)+\sqrt{t+9}=15\)
\(\Leftrightarrow2t+7+\sqrt{t+9}=15\)
\(\Leftrightarrow\sqrt{t+9}=8-2t\)
Bình phương 2 vế : \(t+9=4t^2-32t+64\)
\(\Leftrightarrow-4t^2+33t-55=0\)
Ta có : \(\Delta=33^2-4.\left(-4\right).\left(-55\right)=209\)
\(x_1=\frac{-33-\sqrt{209}}{-8};x_2=\frac{-33+\sqrt{209}}{-8}\)
Bài này nghiệm khá xấu mình gợi ý nhé !
ĐKXĐ : \(x\inℝ\)
Pt ban đầu có thể viết lại :
\(2.\left(2x^2+3x+9\right)+2\sqrt{2x^2+3x+9}=26\)
Đặt \(\sqrt{2x^2+3x+9}=a\left(a>0\right)\)
Pt trên trở thành :
\(2.a^2+2a=26\)
\(\Leftrightarrow a^2+a-13=0\)
\(\Leftrightarrow a=\frac{-1\pm\sqrt{53}}{2}\)
Từ đây thì dễ dàng tính được x nhưng kết quả rất xấu.....
(6x+7)2.2.(3x+4).6.(x+1) = 72
=> (6x+7)2. (6x+8).(6x+6)= 72
=> (6x+7)2. (6x+7 + 1)(6x+7 - 1) = 72
=> (6x+7)2. [(6x+7)2 - 1] = 72
=> (6x+7)4 - (6x+7)2 = 72 => (6x+7)4 -9.(6x+7)2 + 8.(6x+7)2 - 72 = 0
=> (6x+7)2. [(6x+7)2 - 9] + 8.[(6x+7)2 - 9] = 0
=> [(6x+7)2 + 8].[(6x+7)2 - 9] = 0
=> (6x+7)2 - 9 = 0 Vì (6x+7)2 + 8 > o với mọi x
=> (6x+7)2 = 9 => 6x + 7 = 3 hoặc -3
6x+ 7 =3 => x = -2/3
6x+7 = -3 => x = -5/3
Vậy x = -2/3; -5/3
(6x +7)2(3x +4)(x +1) =6 <=> (6x +7)2(6x +8)(x +1) = 12
Đặt 6x +7 =t => 6x + 8 = t +1 ; x =(t - 7)/6 ; x +1 = (t -1)/6
Pt trở thành : \(t^2\left(t+1\right)\frac{t-1}{6}=12\Leftrightarrow t^4-t^2-72=0\Leftrightarrow\left(t^2-9\right)\left(t^2+8\right)=0\)
<=> \(t^2-9=0\)( vì t2 +8 >0) <=> t = 3 hay t = -3
t =3 => 6x +7 = 3 => x = -2/3
t= -3 => 6x +7 = -3 => x = -5/3