"Chứng tỏ tích 2 số chẵn chia hết cho 8"
M.n lm ơn giải giúp e bài toán này ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi n \(\in\) N ta có
a) 113-70= 43
70 : 7 => 43 + 7n-1 : 7
Vậy x= 7n-1 (kết quả trên còn đúng với cả số Z)
b) tương tự
113-104= 9
104 : 13 => 9+ 13n+4 : 13
x= 13n+4
88+220=(23)8+220=224+220=224(216+1)=224x17chia het cho 17
xét 2A=22+23+24+...+211
-A=2+22+23+......+210
A=211-2
ta thấy 2/3 dư 2
22=4/3 dư 2
23=8/3 3 dư 2
..................................
211/3 dư 2
=>211-2laf 1 số chia hết cho 3
2A=2(2+2^2+2^3+2^4+...+2^8+2^9+2^10)
2A=2^2+2^3+2^4+2^5+...+2^9+2^10+2^11)
2A-A=(2^2+2^3+2^4+2^5+...+2^9+2^10+2^11)-(2+2^2+2^3+2^4+...+2^8+2^9+2^10)
A=2^11-2
A=2046
Mà 2046 chia hết cho 3
Vậy A chia hết cho 3
Điều phải chứng minh
Ta có n là số tự nhiên nên n có 2 dạng : 2k hoặc 2k+1 (k\(\in\)N)
+Th1: n = 2k
\(\left(n+3\right)\left(n+6\right)=\left(2k+3\right)\left(2k+6\right)=2\left(2k+3\right)\left(k+3\right)⋮2\)
+Th2: n=2k+1
\(\left(n+3\right)\left(n+6\right)=\left(2k+4\right)\left(2k+7\right)=2\left(k+2\right)\left(2k+7\right)⋮2\)
Vậy với\(\forall n\in N\)thì tích (n+3)(n+6) chia hết cho 2
Gọi 2 số chẵn liên tiếp là 2k và 2k + 2, ta có:
A = 2k(2k + 2) = 4k(k + 1)
Ta thấy A chia hết cho 4 và A chia hết cho 2 (do k và k + 1 là 2 số tự nhiên liên tiếp)
=> A chia hết cho 8
3n + 4 = 3n - 6 + 10
= 3(n - 2) + 10
Để (3n + 4) ⋮ (n - 2) thì 10 ⋮ (n - 2)
⇒ n - 2 ∈ Ư(10) = {-10; -5; -2; -1; 1; 2; 5; 10}
⇒ n ∈ {-8; -3; 0; 1; 3; 4; 7; 12}
Mà n là số tự nhiên
⇒ n ∈ {0; 1; 3; 4; 7; 12}
a) Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên)
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1)
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2
Nên k(k+1) chia hết cho 2
=> 4k(k+1) chia hết cho 2*4=8
de sai bet...vi 2.6=12ro ra la tich 2stn chan ma 12 khong chia het cho 8.de dung phai la:cmr tich 2 so chan lien tiep chia het cho 8........giai:trong 2 so chan lien tiep co 1so chia het cho 2 so kia chia het cho4nen tich 2 so do chia het cho8