Với giá trị nào của biến thì biểu thức sau có giá trị nhỏ nhất, tìm giá trị đó:
A=(x-2014)^2+(y-2015)^3+2016
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với giá trị nào của x thì biểu thức A= /x-2016/ + 2015 có giá trị nhỏ nhất ? tìm giá trị nhỏ nhất đó
Vì /x-2106/ >= 0
=> /x-2016/+2015 >= 2015
=> Min = 2015 <=> x = 2016
Ta có
|y - 2014|\(\ge0\)
Dấu "=" xảy ra khi y-2014=0 <=> x=2014
\(\Rightarrow A=\left|y-2014\right|+2015=0+2015=2015\)
Vậy A đạt giá trị nhỏ nhất là 2015 <=> y=2014
Ta có: \(\left|y-2014\right|\ge0\forall y\)
\(\Leftrightarrow\left|y-2014\right|+2015\ge2015\forall y\)
Dấu '=' xảy ra khi y-2014=0
hay y=2014
Vậy: Giá trị nhỏ nhất của biểu thức A=|y-2014|+2015 là 2015 khi y=2014
Đặt A = |2014-x|+|2015-x|+|2016-x| = |x-2014|+|2015-x|+|2016-x|
Ta có: \(\left|x-2014\right|+\left|2016-x\right|\ge\left|x-2014+2016-x\right|=2\)
MÀ \(\left|2015-x\right|\ge0\)
\(\Rightarrow A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\ge2+0=2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(2014-x\right)\left(x-2016\right)\ge0\\\left|2015-x\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2014\le x\le2016\\x=2015\end{cases}\Rightarrow}x=2015}\)
Vậy GTNN của A = 2 khi x=2015
Ta có :
/ x -100/ >= 0 ; /y + 300/ >= 0
=> /x - 100/ + /y+300/ >=0
=> /x -100/+/y+300/ - 2016 >= -2016
Dấu " = " xẩy ra
<=> \(\hept{\begin{cases}x-100=0\\y+300=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=100\\y=-300\end{cases}}}\)
Vậy GTNN của P là -2016 <=> x = 100 và y = -300
/x-100/\(\ge0,\forall x\)
/y+300/ \(\ge0,\forall y\)
\(|x-100|+|y+300|\ge0,\forall xy\)
\(|x-100|+|y+300|-2016\ge-2016,\forall xy\)
\(P\ge-2016,\forall xy\)
GTNN P là -2016 khi và chỉ khi x= 100, y =-300
bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy
a)Ta thấy: \(\left|x-5\right|\ge0\)
\(\Rightarrow-\left|x-5\right|\le0\)
\(\Rightarrow1000-\left|x-5\right|\le1000\)
\(\Rightarrow A\le1000\)
Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)
Vậy \(Max_A=1000\) khi \(x=5\)
b)Ta thấy: \(\left|y-3\right|\ge0\)
\(\Rightarrow\left|y-3\right|+50\ge50\)
\(\Rightarrow B\ge50\)
Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy \(Min_B=50\) khi \(y=3\)
c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)
\(\Rightarrow C\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi