Một hộp đựng 5 bi đỏ, 2 bi đen, và 4 bi trắng. Lấy ngẫu nhiên 2 bi từ trong hộp. a) Tính xác suất để được 2 bi khác màu b) Tính xác suất để được ít nhất 1 bi đỏ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Gọi hộp 1 có x viên bi trong đó có y bi đen. Hộp 2 có a viên bi trong đó b bi đen.
Tổng số bi của hai hộp 1 và 2 là x + a = 20 . số phần tử của không gian mầu là n Ω = x a .
Goi X là biến cố lấy được 2 bi đen ⇒ n X = C y 1 . C b 1 = y b ⇒ P = n X n Ω = y b x a = 55 84 ⇔ 55 x a = 84 y b
Do đó xa chia hêt cho 84 mà x a ≤ 1 4 x + a 2 = 100 → x = 6 a = 14 (vì x < a)
Khi đó yb = 55 và y , b ∈ ℤ ⇒ y = 5 b = 11 . Suy ra số bi trắng ở hộp 1 là 1, số bi trắng ở hộp 2 là 3.
Vây xác suất cần tính là P 0 = 1 . 3 6 . 14 = 1 28 .
Gọi A là biến cố: “trong số 7 viên bi được lấy ra có ít nhất 1 viên bi màu đỏ.”
Trong hộp có tất cả: 5+ 15 + 35 = 55 viên bi
- Số phần tử của không gian mẫu: Ω = C 55 7 .
- A ¯ là biến cố: “trong số 7 viên bi được lấy ra không có viên bi màu đỏ nào.”
=> n A ¯ = C 20 7 .
Vì A và A ¯ là hai biến cố đối nên: n A = Ω − n A ¯ = C 55 7 − C 20 7 .
Xác suất để trong số 7 viên bi được lấy ra có ít nhất 1 viên bi màu đỏ là P A = C 55 7 − C 20 7 C 55 7 .
Chọn đáp án B.
Không gian mẫu: \(C_{15}^4\)
a.
Số cách lấy 4 viên bi trong đó có 3 viên màu đỏ: \(C_7^3C_8^1\)
Xác suất: \(P=\dfrac{C_7^3.C_8^1}{C_{15}^4}\)
b.
Lấy 4 viên không có viên đỏ nào (lấy từ 8 viên 2 màu còn lại): \(C_8^4\) cách
Lấy 4 viên có ít nhất 1 viên đỏ: \(C_{15}^4-C_8^4\)
Xác suất: \(P=\dfrac{C_{15}^4-C_8^4}{C_{15}^4}\)
c.
Các trường hợp thỏa mãn: (2 đỏ 1 xanh 1 vàng), (1 đỏ 2 xanh 1 vàng), (1 đỏ 1 vàng 2 xanh)
Số cách lấy: \(C_7^2C_5^1C_3^1+C_7^1C_5^2C_3^1+C_7^1C_5^1C_3^2\)
Xác suất: \(P=\dfrac{C_7^2C_5^1C_3^1+C_7^1C_5^2C_3^1+C_7^1C_5^1C_3^2}{C_{15}^4}\)
Không gian mẫu: \(C_{11}^2\)
a. Số cách lấy ra 2 viên cùng màu:
\(C_5^2+C_2^2+C_4^2\)
Số cách lấy ra 2 viên khác màu: \(C_{11}^2-\left(C_5^2+C_2^2+C_4^2\right)\)
Xác suất: \(P=\dfrac{C_{11}^2-\left(C_5^2+C_2^2+C_4^2\right)}{C_{11}^2}=...\)
b. Số cách lấy ra 2 viên không có bi đỏ nào: \(C_6^2\)
Số cách lấy ra ít nhất 1 bi đỏ: \(C_{11}^2-C_6^2\)
Xác suất: \(P=\dfrac{C_{11}^2-C_6^2}{C_{11}^2}=...\)