K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2019

22 tháng 6 2018

Ta chứng minh BĐT

( a + b + c ) ( 1 a + 1 b + 1 c ) ≥ 9 ( * ) ( * ) < = > 3 + ( a b + b a ) + ( b c + c b ) + ( c a + a c ) ≥ 9

Áp dụng BĐT Cô – si cho hai số dương ta có:

a b + b a ≥ 2 b c + c b ≥ 2 c a + a c ≥ 2 =>(*) đúng

 

= > 9 a + b + c ≤ 1 a + 1 b + 1 c ≤ 3 = > a + b + c ≥ 3

Trở lại bài toán: Áp dụng BĐT Cô si cho hai số dương ta có  1 + b 2 ≥ 2 b

Ta có: a 1 + b 2 = a − a b 2 1 + b 2 ≥ a − a b 2 2 b = a − a b 2 ( 1 )

 

Tương tự ta có: 

b 1 + c 2 ≥ b − b c 2 ( 2 ) c 1 + a 2 ≥ c − c a 2 ( 3 )

 

Cộng từng vế của (1), (2) và (3) ta có:

a 1 + b 2 + b 1 + c 2 + c 1 + a 2 ≥ a + b + c − 1 2 ( a b + b c + c a ) = > a 1 + b 2 + b 1 + c 2 + c 1 + a 2 + 1 2 ( a b + b c + c a ) ≥ a + b + c ≥ 3

 

17 tháng 3 2020

Câu hỏi của Hà Văn Minh Hiếu - Toán lớp 8 - Học toán với OnlineMath

11 tháng 9 2020

Ta có : \(a+b+c=6\)

\(\Rightarrow\left(a+b+c\right)^2=36\)

\(\Rightarrow a^2+b^2+c^2+2.\left(ab+bc+ca\right)=36\)

\(\Rightarrow a^2+b^2+c^2=36-2.12=12\)

Do đó : \(a^2+b^2+c^2=ab+bc+ca\left(=12\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

Khi đó biểu thức :

\(\left(a-b\right)^{2012}+\left(b-c\right)^{2013}+\left(c-a\right)^{2014}=0+0+0=0\)

17 tháng 3 2020

Ta có: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(=2a^2+2b^2+2c^2-2ab-2bc-2ac\)

\(=2\left(a^2+b^2+c^2+2ab+2ac+2bc\right)-6ab-6bc-6ac\)

\(=2\left(a+b+c\right)^2-6\left(ab+bc+ac\right)\)

\(=2.6^2-6.12=0\)

Mà : \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)

nên \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Do đó: \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow a=b=c\)

Vậy \(\left(a-b\right)^{2012}+\left(b-c\right)^{2013}+\left(c-a\right)^{2014}=0\)

26 tháng 12 2023

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)

\(\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1+1+1}{a+b+c}=\dfrac{3}{a+b+c}=\dfrac{3}{1}=3\)

\(\Rightarrow a=b=c=\dfrac{1}{3}\)

\(\Rightarrow A=\dfrac{a^3\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=a^3=\left(\dfrac{1}{3}\right)^3=\dfrac{1}{27}\)

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow \frac{abc}{c(a+b)}=\frac{abc}{a(b+c)}=\frac{bca}{b(c+a)}\)

\(\Leftrightarrow c(a+b)=a(b+c)=b(c+a)\)

\(\Leftrightarrow ac+bc=ab+ac=bc+ab\Leftrightarrow ab=bc=ac\)

\(\Rightarrow a=b=c\) (do $a,b,c>0$)

$\Rightarrow M=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1$