Bài 3 tam giác ABC cân tại A có A bằng 100 độ lấy các điểm D và E trên cạnh BC sao cho BD = BA, CE = CA tính số đo góc DAE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đừng tích ai nhá, tôi về mình giải cho, giờ mik phải đi học thêm
ΔABD cân tại B có = 50º nên = 70º
ΔACE cân tại C có = 50º nên = 70º
+) Ta có:
(tổng ba góc trong 1 tam giác)
Lại có: tam giác ABC là tam giác cân tại A nên:
+)Xét tam giác ABD có BA= BD (giả thiết) nên tam giác ABD cân tại B.
Lại có; ( tổng ba góc trong 1 tam giác)
+) Tương tự, ta có tam giác AEC cân tại C ( vì CA =CE)
+) Xét tam giác ADE có:
( tổng ba góc trong tam giác)
Suy ra:
ΔABD cân tại B có = 50º nên = 70º
ΔACE cân tại C có = 50º nên = 70º
Answer:
Ta có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow100^o+\widehat{C}+\widehat{B}=180^o\)
\(\Rightarrow2\widehat{B}=80^o\)
\(\Rightarrow\widehat{B}=\widehat{C}=40^o\)
Ta có: Tam giác ACE cân tại C
Mà: \(\widehat{A}+\widehat{C}+\widehat{E}=180^o\)
\(\Rightarrow2\widehat{E}+40^o=180^o\)
\(\Rightarrow2\widehat{E}=140^o\)
\(\Rightarrow\widehat{E}=70^o\) (1)
Ta có: Tam giác ABD cân tại B
Mà: \(\widehat{A}+\widehat{B}+\widehat{D}=180^o\)
\(\Rightarrow2\widehat{D}+40^o=180^o\)
\(\Rightarrow2\widehat{D}=140^o\)
\(\Rightarrow\widehat{D}=70^o\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{A}+\widehat{E}+\widehat{D}=180^o\)
\(\Rightarrow\widehat{A}+2.70^o=180^o\)
\(\Rightarrow\widehat{A}+140^o=180^o\)
\(\Rightarrow\widehat{A}=40^o\)
Vậy \(\widehat{DAE}=40^o\)
Ta có: \(\Delta\)ABC cân tại A
\(\widehat{A}\) = 100o
=> \(\widehat{B}\) = \(\widehat{C}\) = 20o (Vì tổng các góc trong 1 \(\Delta\) luôn bằng 180o)
* Vì: BA = BD (gt)
=> \(\Delta\)BAD cân tại B.
Ta có: \(\widehat{BAD}+\widehat{B}+B\widehat{DA}=180^O\)
\(\widehat{BAD}+40^{O^{ }}+\widehat{BD}A=180^O\)
\(B\widehat{AD}+\widehat{BDA}=180^{O^{ }}-40^O=120^O\)
Mà \(\Delta\)ABD cân
=> \(\widehat{A}\)= \(\widehat{BDA}\) = 70o
* Vì AC = CE (gt)
=> \(\Delta\)ACE cân tại C.
Ta có: \(\widehat{EAC}+\widehat{C}+\widehat{CEA}=180^O\)
\(\widehat{EAC}+40^O+\widehat{CEA}=180^O\)
\(\widehat{EAC}+\widehat{CEA}=180^O-40^O=140^O\)
Mà \(\Delta\)ACE cân
=> \(\widehat{EAC}=\widehat{CEA}=70^O\)
* Xét \(\Delta\)AED có: \(\widehat{AED}=\widehat{ADE}=70^O\)
Áp dụng định lý tổng các góc trong 1 \(\Delta\) bằng 180o, ta có:
\(\widehat{DAE}+\widehat{ADE}+\widehat{DEA}=180^O\)
\(\widehat{DAE}+70^O+70^O=180^O\)
\(\widehat{DAE}=180^O-70^{O^{ }}-70^O\)
\(\widehat{DAE}=40^O\)
mk tg \(\widehat{B}=\widehat{C}=40\) độ tại 180-100=80 và 80:2=40 ms phải Evil Yasuda