K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

mk có thấy câu d) đâu???????

17 tháng 3 2016

kho the tuong hinh hoc 7 chu ban

17 tháng 3 2016

 gfhth

17 tháng 3 2016

Cho tam giác ABC vuông tại A, AB=15cm, AC=20cm. Vẽ đường cao AH.

a) Cm: AB2= BH.BC.

b) Vẽ đường phân giác BD cắt AH tại E. Cm: Tam giác BHE đồng dạng với Tam giác BAD.

c) Cm: Tam giác ADE cân và tính AE.

Các bạn giải giúp mình nha, nhất là câu c ý. Cảm ơn mọi người.

1 tháng 11 2021

a, Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)

Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=12\left(cm\right)\)

b, Áp dụng HTL: \(HC=\dfrac{AC^2}{BC}=16\left(cm\right)\)

Vì AD là p/g nên \(\dfrac{HD}{DC}=\dfrac{AH}{AC}=\dfrac{3}{5}\Rightarrow HD=\dfrac{3}{5}DC\)

Mà \(DH+DC=HC=16\Rightarrow\dfrac{8}{5}DC=16\Rightarrow DC=10\left(cm\right)\)

\(\Rightarrow DH=6\left(cm\right)\\ \Rightarrow DB=BH+HD=25-16+6=15=AB\)

Do đó tg ABD cân tại B

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC

Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\)

Do đó: ΔHBA\(\sim\)ΔHAC

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\)(hệ thức lượng)

c: \(AB=\sqrt{BC^2-AC^2}=12\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

\(BH=\sqrt{AB^2-AH^2}=7.2\left(cm\right)\)

26 tháng 2 2020

*Xét tam giác HBE đồng dạng với tam giác ABD (gg) có ABD=HBD và BHE=BAD=90

=>BH/BE=AB/BD=>  BH.BD=BE.BA

*có AED=BEH(đối đỉnh)  mà BEH + HBE =90 Hay AED+ABD =90( ABD=HBE) 1

Mặt khác ABD+BDA=90 2 

Từ 1 và 2 =>AED=ADE

suy ra tam giác AED cân

nhớ k 

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{HBA}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=15^2-12^2=81\)

hay BH=9(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)

hay CH=16(cm)

30 tháng 9 2021

bài 9
tam giác ABC vuông tại A có
* BC2=AB2+AC2
  BC2=152+202=625
  BC=25cm
* AH.BC=AB.AC
  AH.25=15.20
  AH.25=300
  AH=12cm

30 tháng 9 2021

tam giác ABH vuông tại H có
BH2=AB2-AH2
BH2=152-122=81
BH=9cm
tam giác ABC vuông tại A có
*AB2=BH.BC
225=9.BC
BC=25cm
CH=BC-BH=25-9=16cm
*AC2=BC2-AB2
 AC2=252-152=400
 AC=20cm