K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

a: Xét ΔABE và ΔACD có

AB=AC

\(\stackrel\frown{A}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

10 tháng 7 2019

A B C D E O H

Cm: a) Xét t/giác ABE và t/giác ACD

có: AB = AC (gt)

  \(\widehat{A}\) :chung

  AE = AD (gt)

=> t/giác ABE = t/giác ACD (c.g.c)

=> BE = CD (2 cạnh t/ứng)

b)Ta có: AD + DB = AB

  AE + EC = AC

mà AD = AE (gt) ; AB = AC (gt)

=> BD = EC

Ta lại có: \(\widehat{ADC}+\widehat{CDB}=180^0\) (kề bù)

          \(\widehat{AEB}+\widehat{BEC}=180^0\)(kề bù)

mà \(\widehat{ADC}=\widehat{AEB}\)(vì t/giác ABE = t/giác ACD)

=> \(\widehat{BDC}=\widehat{BEC}\)

Xét t/giác BOD và t/giác COE

có: \(\widehat{DBO}=\widehat{OCE}\) (vì t/giác ABE = t/giác ACD)

  BD = EC (cmt)

  \(\widehat{BDO}=\widehat{OEC}\) (cmt)

=> t/giác BOD = t/giác COE (g.c.g)

c) Xét t/giác ABO và t/giác ACO

có: AB = AC (gT)

  OB = OC (vì t/giác BOD = t/giác COE)

 AO  : chung

=> t/giác ABO = t/giác ACO (c.c.c)

=> \(\widehat{BAO}=\widehat{CAO}\) (2 góc t/ứng)

=> AO là tia p/giác của \(\widehat{A}\)

d) Xét t/giác ABH và t/giác ACH

có: AB = AC (gt)

 \(\widehat{BAH}=\widehat{CAH}\)(cmt)

 AH : chung

=> t/giác ABH = t/giác ACH (c.g.c)

=> \(\widehat{BHA}=\widehat{CHA}\) (2 góc t/ứng)

Mà \(\widehat{BHA}+\widehat{CHA}=180^0\) (kề bù)

=> \(\widehat{BHA}=\widehat{CHA}=90^0\) => AH \(\perp\)BC (Đpcm)

9 tháng 12 2018

a) ta có : AB=AC

Suy ra tam giac ABC cân

Xét tam giac ABE và tam giác ADE ta có

AB=AC(gt)

góc B=gócC(tính chất tam giác cân)

AD=AE(gt)

Suy ra tam giác ABE=tam giac ACD( c.g.c)

Suy ra BE=CD( hai cạnh tương ứng )

b) Ta có O nằm trên cạnh DC và BE

Suy ra  DO=EO( DC=BE)

XÉT tam giác ADO và tam giác AEO ta có

AD=AE(gt)

AOchung 

DO=EO( chứng minh trên)

Suy ra tam giác AOD = tam giác AEO(c.c.c)

Suy ra góc A1=A2 ( 2 góc tương ứng)

Suy ra AOlà tia phân giác của góc A

a.Xét tam giác DBC và tam giác ECB có:

DB=EC (AB=AC và AD=AE)

góc ABC = góc ACB (cân tại A)

BC là cạnh chung

Do đó tam giác DBC = tam giác ECB (c.g.c)

Suy ra BE= CD (ĐPCM)

16 tháng 2 2016

a. Ta có: AD + DB = AB; AE + EC = AC mà AD = AE; AB = AC

=> DB = EC

\(\Delta\)DCE và \(\Delta\)EBD có:

      DB = EC (cmt)

      B = C (gt)

      DC: cạnh chung

=> \(\Delta\)DCE = \(\Delta\)EBD (c.g.c)

=> BE = CD (hai cạnh tương ứng)

13 tháng 11 2023

loading...ABC có:

AB = AC (gt)

⇒ ∆ABC cân tại A

⇒ ∠ABC = ∠ACB

⇒ ∠DBC = ∠ECB

Do AB = AC (gt)

AD = AE (gt)

⇒ BD = AB - AD = AC - AE = CE

Xét ∆DBC và ∆ECB có:

DB = EC (cmt)

∠DBC = ∠ECB (cmt)

BC là cạnh chung

⇒ ∆DBC = ∆ECB (c-g-c)

⇒ ∠BDC = ∠CEB (hai góc tương ứng)

⇒ ∠BDO = ∠CEO

Do ∆DBC = ∆ECB (cmt)

⇒ ∠BCD = ∠CBE (hai góc tương ứng)

Mà ∠ACB = ∠ABC (cmt)

⇒ ∠ECO = ∠ACB - ∠BCD

= ∠ABC - ∠CBE

= ∠DBO

Xét ∆BOD và ∆COE có:

∠DBO = ∠ECO (cmt)

BD = CE (cmt)

∠BDO = ∠CEO (cmt)

⇒ ∆BOD = ∆COE (g-c-g)

⇒ OD = OE (hai cạnh tương ứng)

Xét ∆ADO và ∆AEO có:

AD = AE (gt)

AO là cạnh chung

OD = OE (cmt)

∆ADO = ∆AEO (c-c-c)

⇒ ∠DAO = ∠EAO (hai góc tương ứng)

⇒ AO là tia phân giác của ∠DAE

Hay AO là tia phân giác của ∠BAC

20 tháng 12 2021

a: Xét ΔABE và ΔACD có

AB=AC

\(\widehat{A}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

22 tháng 3 2022

a/ Xét tam giác ABE và tam giác ADC có: 
Góc A chung 
AD=AE(gt) 
AB=AC(gt) 
=>Tam giác ABE=Tam giác ADC (c.g.c) 
->BE=CD( 2 cạnh tương ứng) 
b/Ta có:Tam giác ABC có AB=AC-> tam giác ABC cân tại A 
Tam giác ABE=tam giác ADC (cmt) 
-> Góc DBM= góc ECM (2 góc tương ứng) (1) 
mà góc B=góc C ( tam giác ABC cân tại A) 
-> Góc MBC=góc MCB 
-> Tam giác MBC cân tại M 
-> BM=CM(tính chất) (2) 
Lại có: AB=AC; AD=AE 
=> BD=EC (3) 
Từ (1); (2) và (3) suy ra: tam giác BMD=tam giác CME(c.g.c) 
c/Xét tam giác ABM và tam giác ACM có: 
AB=AC(gt) 
Góc ABM= góc ACM(CMt) 
BM=CM(cmt) 
=> Tam giác ABM=Tam giác ACK (c.g.c) 
-> góc BAM=góc CAM(2 góc tương ứng) 
hay AM là phân giác góc BAC

22 tháng 3 2022

a, Xét tam giác ABE và tam giác ACD có 

^A _ chung ; AB = AC ; AE = AD 

Vậy tam giác ABE = tam giác ACD (c.g.c) 

=> BD = CD ( 2 cạnh tương ứng ) 

b, Xét tam giác BMD và tam giác CME 

BD = CE ; ^BMD = ^CME ( đối đỉnh ) ; BD = CE 

do AB = AC và AD = AE 

Vậy tam giác BMD = tam giác CME (c.g.c)