K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2021

a: Xét tứ giác AEKF có 

\(\widehat{AEK}=\widehat{AFK}=\widehat{FAE}=90^0\)

Do đó: AEKF là hình chữ nhật

a: Xét tứ giác AEKF có 

\(\widehat{AEK}=\widehat{AFK}=\widehat{FAE}=90^0\)

Do đó: AEKF là hình chữ nhật

b: Xét tứ giác AEFH có 

AE//FH

AE=FH

Do đó: AEFH là hình bình hành

3. Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH,MK lần lượt vuông góc với AB và AC (H thuộc AB và K thuộc AC).a. Chứng minh tứ giác AKMH là hình chữ nhật.b. Chứng minh tứ giác BHKM là hình bình hành.c. Gọi E là trung điểm của MH, gọi F là trung điểm của MK. Đường thẳng HK cắt AE,AF lần lượt tại I và J. Chứng minh HI = KJ.d. Gọi G là trọng tâm tam giác ABC. Giả sử tam giác ABG vuông tại G và AB = 4 √ 3 (cm)....
Đọc tiếp

3. Cho tam giác ABC vuông tại A có đường trung tuyến AM. Kẻ MH,MK lần lượt vuông góc với AB và AC (H thuộc AB và K thuộc AC).

a. Chứng minh tứ giác AKMH là hình chữ nhật.

b. Chứng minh tứ giác BHKM là hình bình hành.

c. Gọi E là trung điểm của MH, gọi F là trung điểm của MK. Đường thẳng HK cắt AE,AF lần lượt tại I và J. Chứng minh HI = KJ.

d. Gọi G là trọng tâm tam giác ABC. Giả sử tam giác ABG vuông tại G và AB = 4 √ 3 (cm). Tính độ dài EF.

4. Cho tam giác ABC vuông tại A , đường cao AH . Gọi D là điểm đối xứng với H qua AB,Elà điểm đối xứng với H qua AC . Gọi I là giao điểm của AB và DH, K là giao điểm của AC và EH .

a. Tứ giác AIHK là hình gì? Vì sao?

b. Chứng minh ba điểm D,E,A thẳng hàng.

c. Gọi M là trung điểm của BC. Chứng minh AM vuông góc IK. 

1
11 tháng 12 2021

a: Xét tứ giác AKMH có 

\(\widehat{AKM}=\widehat{AHM}=\widehat{HAK}=90^0\)

Do đó: AKMH là hình chữ nhật

24 tháng 12 2021

a: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

a: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

b: Xét ΔABC có 

D là trung điểm của BC

DE//AC

Do đó: E là trung điểm của AB

Xét tứ giác AIBD có 

E là trung điểm của AB

E là trung điểm của ID

Do đó: AIBD là hình bình hành

mà AB\(\perp\)DI

nên AIBD là hình thoi

a: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

b: Xét tứ giác DHEF có 

HE//DF

HE=DF

Do đó: DHEF là hình bình hành

a: Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

b: FA=FD

FA=HE

=>HE=FD

Xét tứ giác HEFD có

HE//FD

HE=FD

=>HEFD là hình bình hành

c: Sửa đề: MP vuông góc AB

M đối xứng G qua AB

=>MG vuông góc AB tại trung điểm của MG

=>MG vuông góc AB tại P và P là trung điểm của MG

XétΔABC có

M là trung điểm của BC

MP//AC

=>P là trung điểm của AB

Xét tứ giác AMBG có

P là trung điểm chung của AB và MG

MA=MB

=>AMBG là hình thoi

M đối xứng K qua AC

=>MK vuông góc AC tại trung điểm của MK

=>Q là trung điểm của MK

Xét ΔABC có

M là trung điểm của BC

MQ//AB

=>Q là trung điểm của AC

Xét tứ giác AMCK có

Q là trung điểm chung của AC và MK

MA=MC

=>AMCK là hình thoi

a: Xét tứ giác AMHN có 

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

Do đó: AMHN là hình chữ nhật

a: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật