K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔA'B'C' và ΔABC có 

A'B'/AB=A'C'/AC=B'C'/BC

Do đó: ΔA'B'C'\(\sim\)ΔABC

b: \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{A'B'}{AB}=2\)

ΔABC~ΔA'B'C'

=>\(\dfrac{AB}{A'B'}=\dfrac{AC}{A'C'}=\dfrac{BC}{B'C'}\)

=>\(\dfrac{AB}{9}=\dfrac{AC}{12}=\dfrac{BC}{15}\)

=>\(\dfrac{AB}{3}=\dfrac{AC}{4}=\dfrac{BC}{5}\)

=>AB là cạnh nhỏ nhất trong ΔABC

Theo đề, ta có: AB=3cm

=>\(\dfrac{AC}{4}=\dfrac{BC}{5}=\dfrac{3}{3}=1\)

=>\(AC=4\cdot1=4\left(cm\right);BC=5\cdot1=5\left(cm\right)\)

a) Xét ΔAB'B vuông tại B' và ΔAC'C vuông tại C' có 

\(\widehat{BAB'}\) chung

Do đó: ΔAB'B\(\sim\)ΔAC'C(g-g)

Suy ra: \(\dfrac{AB'}{AC'}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AB'}{AC'}=1\)

Suy ra: AB'=AC'

Ta có: AC'=AB'

AB=AC

Do đó: \(\dfrac{AC'}{AB}=\dfrac{AB'}{AC}\)

Xét ΔAC'B' và ΔABC có 

\(\dfrac{AC'}{AB}=\dfrac{AB'}{AC}\)(cmt)

\(\widehat{C'AB'}\) chung

Do đó: ΔAC'B'\(\sim\)ΔABC(c-g-c)

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

a) Ta thấy:

$\frac{4}{8}=\frac{5}{10}=\frac{6}{12}$ nên 2 tam giác đồng dạng theo TH c.c.c

b) Pitago: $A'C'=\sqrt{B'C'^2-A'B'^2}=\sqrt{16^2-9^2}=5\sqrt{7}$

Xét tam giác $ABC$ và $A'B'C'$ có:

$\widehat{A}=\widehat{A'}=90^0$

$\frac{AB}{AC}\neq \frac{A'B'}{A'C'}$

Do đó 2 tam giác không đồng dạng

17 tháng 3 2022

Vì ∆ A’B’C’ đồng dạng với tam giác ABC nên A′B′AB=A′C′AC=B′C′BCA′B′AB=A′C′AC=B′C′BC  (1)

Thay AB = 3(cm), AC = 7 (cm), BC = 5 (cm) , A’B’ = 4,5 (cm) vào (1)

ta có: 4,5/3=A′C′/7=B′C′/5 (cm)

Vậy: A’C’ =7.4,5/3=10,5=7.4,53=10,5 (cm)

B’C’ =5.4,5/3=7,5 (cm).

 

 

17 tháng 3 2022

Bc 5, ac 8