cho tam giác ABC góc A bằng 90 độ M là trung điểm của BC trên tia AM lấy điểm N sao cho M là trung điểm của ANC chứng minh AB = CN và AB song song với CN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình vẽ đấy nhé
GIAI
a ) xét tam giác AMB và tam giác CMN có
AM = MC ( M là trung điểm của AC )
góc AMB = goc CMN ( đối đỉnh )
MB = MN ( M là trung điểm của BN )
=> tam giác AMB = tam giác CMN ( c.g.c)
=> AB = CN ( 2 cạnh tương ứng )
=> góc BAM = NCM = 90 độ ( 2 góc tương ứng )
=> CN vuông góc với AC (dpcm )
b ) chúng minh tương tự
=> tam giác ANM = tam giác CBM ( c.g.c )
=> AN = BC ( 2 cạnh tương ứng )
=> góc ANM = góc CBM ( 2 góc tương ứng )
mà 2 góc ở vị trí so le trong của 2 đường thẳng AN và BC
=> AN song song BC ( dpcm)
a) Xét tam giác BMA và tam giác CMN:
BM=MC ( M là trung điểm của BC)
\(\widehat{BMA=\widehat{CMN}}\)(2 góc đối đỉnh)
AM=MN ( M là trung điểm của AN)
=>Tam giác BMA=tam giác CMN(c-g-c)
=>\(\widehat{ABM}\)=\(\widehat{MCN}\)(2 góc tương ứng)
mà chúng nằm ở vị trí so le trong
=>BA//NC
b) CM cho AN=BC =>Am=\(\frac{1}{2}\)BC
Xét ΔAMB và ΔNMC có :
MA=MN ( gt)
\(\widehat{M_1}\)= \(\widehat{M_2}\)(2 góc đối đỉnh )
MB =MC (gt)
Suy ra: ΔAMB=ΔNMC(c.g.c)
⇒ CN = AB ( 2 cạnh tương ứng )
⇒ \(\widehat{NCM}=\widehat{ABM}\)( 2 góc tương ứng ) ⇒ CN // AB ( vì có cặp góc so le trong bằng nhau )
a: Xét ΔCMN và ΔAMB có
MC=MA
\(\widehat{CMN}=\widehat{AMB}\)
MN=MB
Do đó: ΔCMN=ΔAMB
Suy ra: \(\widehat{MCN}=\widehat{MAB}\) và CN=AB
hay CN\(\perp\)AC
a: Xét ΔABI và ΔACI có
AB=AC
\(\widehat{BAI}=\widehat{CAI}\)
AI chung
Do đó: ΔABI=ΔACI
Ta có: ΔABC cân tại A
mà AI là đường trung tuyến
nên AI là đường phân giác
b: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{ABM}=\widehat{ACN}\)
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
c: Ta có: ΔABC cân tại A
mà AI là đường trung tuyến
nên AI là đường cao
mình chưa học đến bài tam giác cân thì có bài làm nào khác không ạ?
\(a,\) \(\left\{{}\begin{matrix}AD=BD\\CD=DE\\\widehat{ADC}=\widehat{EDB}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta BED=\Delta ACD\left(c.g.c\right)\)
\(b,\left\{{}\begin{matrix}AM=MN\\MB=MC\\\widehat{AMB}=\widehat{CMN}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta NMC\left(c.g.c\right)\\ \Rightarrow\widehat{MCN}=\widehat{MBA}\)
Mà 2 góc này ở vị trí so le trong nên \(CN//AB\)
\(c,\Delta BED=\Delta ACD\Rightarrow\widehat{CAD}=\widehat{EBD}=90^0\\ \Rightarrow BD\bot BE\left(1\right)\)
\(\left\{{}\begin{matrix}AM=MN\\MB=MC\\\widehat{AMC}=\widehat{BMN}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMC=\Delta NMB\left(c.g.c\right)\\ \Rightarrow\widehat{MCA}=\widehat{MBN}\)
Mà 2 góc này ở vị trí so le trong nên \(AC\text{//}NB\Rightarrow NB\bot AB\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow NB\equiv BE\) hay E,B,N thẳng hàng
a) Xét tam giác ABM và tam giác NCM có :
BM = CM ( GT )
góc BMA = góc NMC ( đối đỉnh )
AM = NM ( GT )
=> tam giác ABM = tam giác NCM ( c-g-c )
=> AB =NC ( cặp cạnh tương ứng )
tam giác ABM = tam giác NCM
=> góc ABM = góc NCM ( cặp góc tương ứng )
mà 2 góc này ở vị trí sole trong
=> AB // CN ( đpcm )
b) ta có góc ABM = góc NCM
góc BAM = góc CNM
=> góc MAC = góc MCA
=> tam giác AMC cân => AM =MC
Mà M là trung điểm của BC ( BM = MC )
AM = 1/2 BC ( đpcm )