Có bao nhiêu tam giác?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Đa giác n đỉnh có \(C_n^2\) đoạn thẳng nối các đỉnh
Trong đó có n cạnh (là đường nối 2 đỉnh liền kế)
\(\Rightarrow\) Có \(C_n^2-n\) đường chéo
b. Cứ 3 đỉnh tạo thành 1 tam giác nên số tam giác là: \(C_n^3\)
c. Tam giác có 2 cạnh là 2 cạnh của tam giác khi 3 đỉnh của tam giác là 3 đỉnh liền kề
\(\Rightarrow\) có n tam giác thỏa mãn
d. Số tam giác chỉ có 1 cạnh là cạnh đa giác: có n cách chọn 2 điểm liền kề, ta có \(n-4\) cách chọn 1 điểm còn lại ko kề với 2 điểm trên
\(\Rightarrow n\left(n-4\right)\) tam giac thỏa mãn
e. Số tam giác thỏa mãn: \(C_n^3-\left(n+n\left(n-4\right)\right)\)
a) 3 điểm , 3 đoạn thẳng
b) 4 tam giác
còn đâu chịu
hình rắc rối lắm
tón lớp 1 đây ạ
hay đề tự nghĩ
Gọi đa giác là \(A_1A_2...A_{10}\)
a.
Tam giác có 2 cạnh là cạnh đa giác khi 3 đỉnh của tam giác là 3 đỉnh liền kề của đa giác.
Đa giác có 10 bộ 3 đỉnh liền kề (\(A_1A_2A_3;A_2A_3A_4...;A_{10}A_1A_2\)) nên có 10 tam giác thỏa mãn.
b.
Chọn 2 đỉnh liền kề của đa giác: có 10 cách \(\left(A_1A_2;A_2A_3;...;A_{10}A_1\right)\)
Chọn đỉnh còn lại ko liền kề với 2 đỉnh nói trên: có \(10-4=6\) đỉnh (bỏ đi 2 đỉnh đã chọn ban đầu và 2 đỉnh kề với nó)
\(\Rightarrow10.6=60\) tam giác thỏa mãn
c.
Số tam giác bất kì có đỉnh là đỉnh của đa giác: \(C_{10}^3=120\)
Số tam giác ko có cạnh nào là cạnh đa giác: \(120-\left(10+60\right)=50\)
có 3 tam giác nha
Có 3 hình