chứng minh:
1) m2+n2+2>=2m+2n với mọi m, n
2) (a+b)(\(\frac{1}{a}+\frac{1}{b}\))>=4 (a>0,b>0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, Ta có: \(\Delta'=\left(-m\right)^2-\left(2m-1\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)
Suy ra pt luôn có 2 nghiệm
2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)
\(A=\left(x_1^2+x_2^2\right)-5x_1x_2\\ =\left(x_1+x_2\right)^2-7x_1x_2\\ =\left(2m\right)^2-7\left(2m-1\right)\\ =4m^2-14m+7\)
Đề sai r bạn
\(b,4m^2-14m+7\\ =4\left(m^2-\dfrac{7}{2}m+\dfrac{7}{4}\right)\\ =4\left(m^2-2.\dfrac{7}{4}m+\dfrac{49}{16}-\dfrac{21}{16}\right)\\ =4\left(m-\dfrac{7}{4}\right)^2-\dfrac{21}{4}\ge-\dfrac{21}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow m=\dfrac{7}{4}\)
Vậy m=`7/4` thì A đạt GTNN
1: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-1\right)\)
\(=4m^2-8m+4=\left(2m-2\right)^2>=0\forall m\)
Do đó: Phương trình luôn có hai nghiệm
2: \(A=\left(x_1+x_2\right)^2-7x_1x_2\)
\(=\left(-2m\right)^2-7\left(2m-1\right)\)
\(=4m^2-14m+7\)
a/ Áp dụng Bất đẳng thức Cauchy cho các số m2,n2,1 không âm ta được:
m2+1>=2m(1)
n2+1>=2n (2)
Từ (1) và (2)=> m2+n2+2>= 2m+2n vs mọi m,n (đpcm)
b/ Ta có: (a-b)2>= 0
<=> a2 +b2-2ab>=0
<=>a2+b2+2ab>=4ab (cộng 2 vế vs 2ab với a>0,b>0)
<=> (a+b)2>= 4ab
<=> a+b >= 4ab/(a+b) (chia 2 vế cho a+b với a>0.b>0)
<=> (a+b)/ab>= 4/(a+b) (3)
Mà: 1/a+1/b=(a+b)/ab (4)
Từ (3) và (4)=> 1/a+1/b>=4/(a+b)
<=> (a+b)(1/a+1/b)>=4 (đpcm)
cộng 2 vế với 4 ab , nhầm ^^