Viết phương trình đường thẳng y=ax+b biết nó đi qua hai điểm A(-3;2), B(5;-4). Tính diện tích tam giác được tạo bởi đường thẳng và hai trục tọa độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐTHS đi qua $A(-1;2)$ nên $y_A=ax_A+b$ hay $2=-a+b(1)$
ĐTHS có tung độ gốc là $3$ tức là nó đi qua $(0,3)$
$\Rightarrow 3=a.0+b(2)$
Từ $(1);(2)\Rightarrow b=3; a=1$
Vậy ptđt cần tìm là $y=x+3$
$
+ A (4; 3) thuộc đường thẳng y = ax + b ⇒ 3 = 4.a + b (1)
+ B (2; –1) thuộc đường thẳng y = ax + b ⇒ –1 = 2.a + b (2)
Lấy (1) trừ (2) ta được: 3 – (–1) = (4a + b) – (2a + b)
⇒ 4 = 2a ⇒ a = 2 ⇒ b = –5.
Vậy đường thẳng đi qua hai điểm A(4;3), B(2 ; –1) là y = 2x – 5.
5:
Gọi (d): y=ax+b là phương trình cần tìm
Theo đề, ta có hệ:
3a+b=-1 và 2a+b=3
=>a=-4 và b=11
=>y=-4x+11
4:
vecto BC=(1;-1)
=>AH có VTPT là (1;-1)
Phương trình AH là:
1(x-1)+(-1)(y+3)=0
=>x-1-y-3=0
=>x-y-4=0
Theo đề, ta có:
\(\left\{{}\begin{matrix}-3a+b=2\\5a+b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-8a=6\\5a+b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{3}{4}\\b=-4-5a=-4-5\cdot\dfrac{-3}{4}=-4+\dfrac{15}{4}=-\dfrac{1}{4}\end{matrix}\right.\)