K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:

A=102004+1/102005+1

10A=102005+10/102005+1

10A=102005+1+9/102005+1

10A=1+9/102005+1

Tương tự:

B=102005+1/102006+1

10B=1+9/102006+1

Vì 9/102005+1>9/102006+1 nên 10A>10B

⇒A>B

Chúc bạn học tốt!

7 tháng 5 2021

thank

31 tháng 1 2016

=>x(x+1)=1000.1001

Mà x<x+1 là 1 đơn vị

1000<1001 1 đơn vị

=>x=1000

31 tháng 1 2016

phân tích 1001000 ra thừa số nguyên tố rồi nhóm sao cho ổn

31 tháng 1 2016

phân tích 1001000 ra thừa số nguyên tố rồi nhóm sao cho ổn

31 tháng 1 2016

Vì x và x+1 là hai số tự nhiên liên tiếp

Mà x = 1000 => x+1 = 1001

=> x(x+1) = 1000.1001 = 1001000

Trên đây là lời giải thích của tớ

12 tháng 5 2018

Vì 0,100 = 0,10= 0,1 nên Lan và Mỹ viết đúng

Vì 1 100 = 0,010 nên Hùng viết sai

20 tháng 3 2017

Vì 0,100 = 0,10= 0,1 nên Lan và Mỹ viết đúng

Vì 1 100 = 0,010 nên Hùng viết sai

2 tháng 7

27 tháng 7 2021

p = 1+ \(\dfrac{x+1}{\sqrt{x}}\) sẽ lớn hơn -1 vì \(\sqrt{x}\) => x dương =>  \(\dfrac{x+1}{\sqrt{x}}\)> 0

Ta có: \(P-1=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{x+1}{\sqrt{x}}>0\forall x\) thỏa mãn ĐKXĐ

Suy ra: P>1

\(A+B+C=x^2yz+xy^2z+xyz^2=xyz\left(x+y+z\right)=xyz\)

6 tháng 3 2022

\(A=x^2yz\) \(B=xy^2z\) \(C=xyz^2\)

\(A+B+C=x^2yz+xy^2z+xyz^2\)

                    \(=xyz\left(x+y+z\right)=xyz.1=xyz\)

 

AH
Akai Haruma
Giáo viên
14 tháng 11 2021

Lời giải:

$P=4a^2+b^2+c^2+4ab+4ac+2bc=(2a+b+c)^2=(-1)^2=1$

14 tháng 11 2021

cảm ơn nhiều ạ

Bài 1: 

\(=\dfrac{x^3-x^2+x+3}{x+1}\)

\(=\dfrac{x^3+x^2-2x^2-2x+3x+3}{x+1}\)

\(=x^2-2x+3\)

AH
Akai Haruma
Giáo viên
24 tháng 3 2021

Lời giải:

a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)

Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$

Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$

Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$

b) Rõ ràng $10^{11}-1< 10^{12}-1$. 

Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$

Áp dụng kết quả phần a:

$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$

24 tháng 3 2021

Cô ơi cho em hỏi là từ 7h - 9h thứ 2 tuần sau tức ngày 29/3 cô có online không ạ ?