Cho tam giác ABC: các đường phân giác trong BD,CE. Lấy điểm M trên đoạn thẳng DE. CMR: khoảng cách từ M đến BC bằng tổng khoảng cách từ M đến AB, AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta\)ABD cân ở B vì có BA = BD,BI là phân giác của góc ABD nên BI là đường trung trực của AD
\(\Delta\)ACE cân tại C vì có CA = CE,CI là tia phân giác của góc ACE nên CI là đường trung trực của AE
Vậy I là giao điểm của các đường trung trực của \(\Delta\)AED
b) Từ I kẻ \(IP\perp AB,IM\perp BC,IN\perp CA\)
thì IP = IM = IN = m
\(\Delta\)API và \(\Delta\)ANI là tam giác vuông cân nên AP = AN = PI = IN = m
\(\Delta\)IPB = \(\Delta\)IMP (cạnh huyền - góc nhọn) => BP = PM(hai cạnh tương ứng)
Mà BA = BD => MD = AP = m
\(\Delta\)INC = \(\Delta\)IMC (cạnh huyền - góc nhọn) => CM = CN(hai cạnh tương ứng)
Mà CE = CA => EM = AN = m
Vậy DE + DM + ME = 2m
c) \(\Delta\)IDE có \(IM=\frac{1}{2}DE\)nên ^DIE là góc vuông => ^DIE = 900
Theo tính chất góc ngoài của tam giác , ta suy ra :
^EAD = ^EAx + ^xAD = 1/2(^EIx + ^xID) = 1/2^EID = 1/2.900 = 450
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).