Cho đường tronf (O;r) và một dây AB có số đo của cung lớn AB gấp đôi số đo cung nhỏ AB. Tình diện tích tam giác AOB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ điểm A nằm ngoài đường tròn (O,R) vẽ tiếp tuyến AB,cát tuyến AMN với đường tròn( M nằm giữa A,N, B thuộc cung lớn MN) gọi C là điểm chính giữa cung nhỏ MN. đường thẳng MN lần lượt cắt OC và BC tại I và E.
a. Chứng minh tứ giác AIOB nội tiếp
b. Chứng minh tam giác ABE cân
c. Biết AB bằng 2R.Tính chu vi của đường tròn ngoại tiếp tứ giác AIOB theo R
đ. Kẻ tiếp tuyến thứ 2 AL của đường tròn O.Gọi K là giao điểm của BL và ÒA. Chứng minh AM.AN=AL bình, AK.AO=AM.AN
Sau đây là cách của mình
Xét dây ED và tâm O của ( O ) có H là trung điểm của DE nên \(OH\perp DE\)
Khi đó tứ giác AHOC là tứ giác nội tiếp, tương tự ABHD cũng là tứ giác nội tiếp
Khi đó 5 điểm A,B,H,O,C đồng viên
Khi đó \(\widehat{AHB}=\widehat{AOB};\widehat{AHB}=\widehat{AOB}\)
Mà theo tính chất 2 tiếp tuyến cắt nhau ta có được \(OA\) là phân giác của \(\widehat{BOC}\)
Hay \(\widehat{AOB}=\widehat{AOC}\Rightarrow\widehat{AHB}=\widehat{AHC}\Rightarrow HA\) là phân giác của ^BHC
Vậy ta có đpcm
** chứng minh 5 điểm A, B, H , O, C cùng thuộc một đường tròn
+OB vuông góc với AB→góc ABO =90 độ→B thuộc đường tròn đường kính AO (1)
+CMTT: góc ACO = 90 độ→C thuộc đường tròn đường kính AO (2)
+DH=DE →OH vuông góc với DE
→ góc OHA =90 độ → H thuộc dg` tron` dg` kính AO (3)
><Từ (1),(2),(3) cho ta: 5 điểm A, B, H , O, C cùng thuộc một đường tròn
CM: HA là tia phân giác của góc BHC
Xét Đg Tr Đg kính AO
+AB=AC (tiếp tuyến đường tròn (O) cắt nhau tại A)
→Cung AB= cung AC →^BHA=^AHC (chắn 2 cung bằng nhau) →AH là phân giác của góc BHC
CM: AB^2= AI . AH
+Gọi giao điểm của AO và BC là G
=>Ta có BG vuông góc AO
+∆ABO vuông tại B có đg/cao BG→AB^2=AG.AO
+∆vuông AGI đồng dạng ∆vuông AHO (Â chung)
→AG/AI = AH/AO→AG.AO = AI.AH = AB^2 (đpcm)
CM AE song song với CK (*)
(*)<=> ^BKC = ^BHA
+ ^BHA = 180 - HBA -BAH (Xét ∆BHA)
=180 - (180-HCA)-BCH (Xét đt đk AO)
=HCA-BCH =BCA =BKC (cùng chắn cung BC của (O) ) (đpcm)
S=OA*OB*sin120=r^2*sin120