Tìm số tự nhiên n và chữ số a biết: 1+2+3+...+n=aaa
HELP ME!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:Như ta đã biết thì :
BCNN(a,b).ƯCLN(a,b)=ab
Áp dụng vào thì:
60.ƯCLN(a,b)=180
Suy ra ƯCLN(a,b)=3
Gọi d là ƯCLN(a,b).
Hay a=dm,b=dn với ƯCLN(m,n)=1
Hay dm.dn=180
m.n=180:(3.3)
mn=20
\(\Rightarrow\)
m | 1 | 2 | 4 | 5 | 10 | 20 |
n | 20 | 10 | 5 | 4 | 2 | 1 |
\(\Rightarrow\)
a | 3 | 6 | 12 | 15 | 30 | 60 |
b | 60 | 30 | 15 | 12 | 6 | 3 |
Vậy:\(a;b\in\left(3;60\right);\left(6;30\right);\left(12;15\right);\left(15;12\right);\left(30;6\right);\left(60;3\right)\)
1+2+3+...+n=aaa
=>\(\dfrac{\text{n(n+1)}}{2}\)=aaa
=>n(n+1)=aaa.2=a.111.2=a.3.37.2=6a.37
Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên 6a.37 cũng là tích 2 số tự nhiên liên tiếp
+)6a=36=>a=6 (TM)
+)6a=38=>a=19/3 (không TM)
do đó a=6 thỏa mãn
Khi đó n(n+1)=1332=36.37=36.(36+1)
=>n=36
Vậy n=36;a=6
2/
a/
Gọi số cần tìm là \(\overline{bb}\)
Theo đề bài \(\overline{bb}⋮2\) => b chẵn
\(\overline{bb}:5\) dư 2 => b={2;7}
Do b chẵn => b=2
Số cần tìm \(\overline{bb}=22\)
b/
Gọi số cần tìm là \(\overline{bbb}\)
Theo đề bài \(\overline{bb}:2\) dư 1 => b lẻ
\(\overline{bbb}⋮5\) => b={0;5}
Do b lẻ => b=5
Số cần tìm \(\overline{bbb}=555\)
c/
Gọi số cần tìm là \(\overline{bb}\)
Theo đề bài \(\overline{bb}:5\) dư 1 => b={1;6}
\(\overline{bb}⋮3\Rightarrow b+b=2b⋮3\Rightarrow b⋮3\)
=> b=6
Số cần tìm là \(\overline{bb}=66\)
1/
a/
\(\dfrac{3n+1}{n-1}=\dfrac{3\left(n-1\right)+4}{n-1}=3+\dfrac{4}{n-1}\)
\(\left(3n+1\right)⋮\left(n-1\right)\) khi \(4⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)=\left\{-4;-2;-1;1;2;4\right\}\Rightarrow n=\left\{-3;-1;0;2;3;5\right\}\)
b/
\(\left(n-3\right)⋮\left(2n-1\right)\Rightarrow2\left(n-3\right)⋮\left(2n-1\right)\)
\(\dfrac{2\left(n-3\right)}{2n-1}=\dfrac{2n-6}{2n-1}=\dfrac{\left(2n-1\right)-5}{2n-1}=1-\dfrac{5}{2n-1}\)
\(2\left(n-3\right)⋮\left(2n-1\right)\) khi \(5⋮\left(2n-1\right)\Rightarrow\left(2n-1\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n=\left\{-2;0;1;3\right\}\)
Đặt
S=1 +2+..+n
S=n+(n-1)+..+2+1
=> 2S = n(n+1)
=> S=n(n+1)/2
=> aaa =n(n+1)/2
=> 2aaa =n(n+1)
Mặt khác aaa =a*111= a*3*37
=> n(n+1) =6a*37
Vế trái là tích 2 số tự nhiên liên tiếp
=> a*6 =36
=> a=6
(nêu a*6 =38 loại)
Vậy n=36, aaa=666
dãy số 1,2,3,..............n có n số hạng suy ra 1+2+3+........+n= n*(n+1)/2
mà 1+2+3+........+n=aaa
suy ra n*(n+1)/2=aaa=a*111=a*3*37 suy ra n*(n+1)=2*3*37*a
vì tích n*(n+1) có ba chữ số suy ra n+1<74 suy ra n=37 hoặc n+1=37
với n=37 thì 37*38/2=703 loại
với n+1=37 thì 36*37/2=666
vậy n=36 và a=6 ta có 1+2+3+........+36=666
1 + 2 + 3 + .... + n = aaa
=> n(n + 1) : 2 = a . 111
=> n(n + 1) = 222.a
Vì \(0< a\le9\)
Nếu a = 1 => n(n + 1) = 222 => n \(\in\varnothing\)
Nếu a = 2 => n(n + 1) = 444 => n \(\in\varnothing\)
Nếu a = 3 => n(n + 1) = 666 => n \(\in\varnothing\)
Nếu a = 4 => n(n + 1) = 888 => n \(\in\varnothing\)
Nếu a = 5 => n(n + 1) = 1110 => n \(\in\varnothing\)
Nếu a = 6 => n(n + 1) = 1332 => n(n + 1) = 36.37 => n = 36 (tm)
Nếu a = 7 => n(n + 1) = 1554 => n \(\in\varnothing\)
Nếu a = 8 => n(n + 1) = 1776 => n \(\in\varnothing\)
Nếu a = 9 => n(n + 1) = 1998 => n \(\in\varnothing\)
Vậy n = 36 ; a = 6
We have \(1+2+3+...+n=\overline{aaa}\)
\(\Rightarrow\frac{n\left(n+1\right)}{2}=\overline{aaa}\)
\(\Rightarrow n\left(n+1\right)=2.3.37a\)
\(\Rightarrow n\left(n+1\right)⋮37\)
But 37 is a number element so \(\orbr{\begin{cases}n⋮37\\n+1⋮37\end{cases}}\)
again yes \(n< 74\)\(\Rightarrow\orbr{\begin{cases}n=37\\n+1=37\end{cases}}\)
+) If n = 37
\(\Rightarrow a=6\)
+) If n + 1 = 37 so n = 36
instead we see no integer value satisfying
So n = 36 and a = 6
Đặt
S=1 +2+..+n
S=n+(n-1)+..+2+1
=> 2S = n(n+1)
=> S=n(n+1)/2
=> aaa =n(n+1)/2
=> 2aaa =n(n+1)
Mặt khác aaa =a*111= a*3*37
=> n(n+1) =6a*37
Vế trái là tích 2 số tự nhiên liên tiếp
=> a*6 =36
=> a=6
(nêu a*6 =38 loại)
Vậy n=36, aaa=666
Đặt
S=1 +2+..+n
S=n+(n-1)+..+2+1
=> 2S = n(n+1)
=> S=n(n+1)/2
=> aaa =n(n+1)/2
=> 2aaa =n(n+1)
Mặt khác aaa =a*111= a*3*37
=> n(n+1) =6a*37
Vế trái là tích 2 số tự nhiên liên tiếp
=> a*6 =36
=> a=6
(nêu a*6 =38 loại)
Vậy n=36, aaa=666