Thực hiện phép tính
A = \(\left(1-\frac{1}{1+2}\right)\times\left(1-\frac{1}{1+2+3}\right)\times...\times\left(1-\frac{1}{1+2+...+2006}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
biết làm bài 1 thôi
\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\cdot\cdot\cdot\times\left(\frac{1}{999}+1\right)\)
= \(\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times\cdot\cdot\cdot\times\frac{1000}{999}\)
lượt bỏ đi còn :
\(\frac{1000}{2}=500\)
Ta có (1-1/2).(1-1/3^2).(1-1/4^2).....(1-1/10^2)
=(2^2-1/2^2).(3^2-1/3^2).....(10^2-1/10)
=(1.3/2^2).(2.4/3^2).....(9.11/10^2)
=11/20
\(\left(1-\frac{4}{5}+\frac{3}{10}\right).\left(-\frac{2}{3}\right)^2\)
\(=\left(\frac{10}{10}-\frac{8}{10}+\frac{3}{10}\right).\frac{4}{9}\)
\(=\frac{1}{2}.\frac{4}{9}\)
\(=\frac{2}{9}\)
\(D=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(D=\left(\frac{3}{2\cdot2}\right)\left(\frac{8}{3\cdot3}\right)\left(\frac{15}{4\cdot4}\right)...\left(\frac{9999}{100\cdot100}\right)\)
\(D=\frac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(99\cdot101\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(100\cdot100\right)}\)
\(D=\frac{\left(1\cdot2\cdot3\cdot...\cdot99\right)\left(3\cdot4\cdot5\cdot...\cdot101\right)}{\left(2\cdot3\cdot4\cdot...\cdot100\right)\left(2\cdot3\cdot4\cdot...\cdot100\right)}\)
\(D=\frac{1\cdot101}{100\cdot2}\)
\(=\frac{101}{200}\)
\(D=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\cdot\cdot\cdot\left(\frac{1}{100^2}-1\right)\)(có 50 thừa số nên tích đó là số dương)
\(\Rightarrow D=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\cdot\cdot\cdot\left(\frac{100^2-1}{100^2}\right)\)
\(D=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\cdot\cdot\frac{99\cdot101}{100^2}\)
\(D=\frac{101}{2\cdot100}=\frac{101}{200}\)
\(=\frac{1}{2}\times\frac{2}{3}\times....\times\frac{2003}{2004}\)
\(=\frac{1\times2\times3\times...\times2003}{2\times3\times4\times...\times2014}\)
\(=\frac{1}{2014}\)