Một cây cau bị giông bão thổi mạnh , gãy gập một phần thân cây xuống làm ngọn cây chạm đất và tạo với mặt đất mộy góc 21° . Người ta đo được khoảng cách từ chỗ ngọn cậu chạm đến gốc cau là 5,7m .Biết rằng cây cau mọc vuông góc với mặt đất , hãy tính chiều cao của cây cau (làm tròn đến chữ số thập phân thứ 2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tam giác tại bởi phần thân cây bị gãy với phần cây còn lại và mặt đất là △ ABC vuông tại A. Ta có
cos 20 = 7.5 / cạnh huyền
⇒ cạnh huyền = \(\dfrac{7,5}{cos20}\)\(\approx\) 8 ( m )
Áp dụng định lý Py-ta-go ta có:
phần bị gãy của cây cau là : \(\sqrt{8^2-7,5^2}\) = 2.78 ( m )
⇒ Chiều cao cây cau lúc đầu là : 8 + 2.78 =10.78 ( m )
gọi k/c từ điểm gãy đến ngọn cây là x . Vì cây cau vuông góc với mặt đất nên cây cau gãy tạo với mặt đất hình tam giác vuông =>khoảng cách từ gốc đến điểm gãy và k/c từ ngọn cây đến góc là cạnh góc vuông và x là cạnh huyền Định Lí PTG ta có : 3^2+4^2=x^2 =>x=5 => chiều cao cây = 5+4=9m
Là \(\tan35^0\cdot5,5+\dfrac{5,5}{\cos35^0}\approx10,57\left(m\right)=1057\left(cm\right)\left(C\right)\)