Kí hiệu [x] là số nguyên lớn nhất không vượt quá x
Cho A =\(\frac{3}{4}+\frac{8}{9}+\frac{15}{36}+...+\frac{2499}{2500}\)
Vậy [A] = ... ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tui làm ra đc 48 đúng rồi nhưng để các bạn giải nếu ko đc thì tui trả lời
\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}\)
\(=\frac{1.3}{2^2}+\frac{2.4}{3^2}+\frac{3.5}{4^2}+...+\frac{49.51}{50^2}\)
\(=\frac{1.3.2.4.3.5...49.51}{2^2.3^2.4^2...50^2}\)
\(=\frac{\left(1.2.3...49\right)\left(3.4.5...51\right)}{2^2.3^2.4^2...50^2}\)
\(=\frac{1.2.50.51}{2^2.50^2}=\frac{51}{100}\)
\(=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+1-\frac{1}{2500}\)
=(1+1+1+...+1)-(\(\frac{1}{4}+\frac{1}{9}+...+\frac{1}{2500}\)
=49+ Biểu thức trong ngặc
Mà biểu thức trong ngoặc <1 nên A>49-1=48
Biểu thức trong ngoặc>0 nên A<49
Ta có 48<A<49
=> Phần nguyên của A=48
B = 3/4 + 8/9 + 15/16 + .... + 2499/2500
B = (1 - 1/4) + (1 - 1/9) + (1 - 1/16) + ... + (1 - 1/2500)
B = (1 - 1/22) + (1 - 1/32) + (1 - 1/42) + ... + (1 - 1/502)
B = (1 + 1 + 1 + ... + 1) - (1/22 + 1/32 + 1/42 + ...+ 1/502)
49 số 1
B = 49 - (1/22 + 1/32 + 1/42 + ... + 1/502)
=> B < 49 (1)
B > 49 - (1/1×2 + 1/2×3 + 1/3×4 + ... + 1/49×50)
B > 49 - (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50)
B > 49 - (1 - 1/50)
B > 49 - 1 + 1/50
B > 48 + 1/50 > 48 (2)
Từ (1) và (2) => 48 < B < 49
=> B không phải là số nguyên ( đpcm)
B = 3/4 + 8/9+ 15/16 + ... + 2499/2500
B = (1 - 1/4) + (1 - 1/9) + (1 - 1/16) + ... + (1 - 1/2500)
B = (1 - 1/22) + (1 - 1/32) + (1 - 1/42) + ... + (1 - 1/502)
B = (1 + 1 + 1 + ... + 1) - (1/22 + 1/32 + 1/42 + .... + 1/502)
49 số 1
=> B = 49 - (1/22 + 1/32 + 1/42 + ... + 1/502)
=> B < 49 (1)
B > 49 - (1/1×2 + 1/2×3 + 1/3×4 + ... + 1/49×50)
B > 49 - (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50)
B > 49 - (1 - 1/50)
B > 49 - 1 + 1/50
B > 48 + 1/50 > 48 (2)
Từ (1) và (2) => 48 < M < 49
=> M không phải số nguyên ( đpcm)