Cho dãy số 3 7 11 15.... a Tìm số hạng thứ 2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3, 7, 11, 15, 19, 23, 27, 31, 35, 39.
Mỗi số cách nhau 4 đơn vị. Số thứ 10 là 39.
a. Số các số hạng là:
(359 - 3) : 4 + 1 = 90 số
b. Ta thấy 3 : 2 dư 1
7 chia 2 dư 1
11 chia 2 cũng dư 1
Vậy 74 : 2 dư 0 nên ko thuộc dãy trên
99 : 2 dư 1 nên thuộc dãy trên
c. Số hạng thứ 2019 là 3 x 2019 + 2018 = 8075
a)Dãy số trên có số số hạng là
(359-3):4+1=90(số hạng)
b)3=4x0+3
7=4x1+3
11=4x2+3
15=4x3+3
19=4x4+3
359=119x3+3
Vậy các số hạng trên đều chia cho 4 dư 3
Xét 74=4x18+2(loại)
99=4x24+3(nhận)
c)Số hạng thứ 2019 là
(2019-1)x4+3=8075
số hạng thứ 100 của dãy là: 3+(100-1)x2=201
đáp số:201
k mình nha!
\(A=1+3+3^2+3^3+3^4+3^5+.....+3^{2017}\)
\(=1+3+\left(3^2+3^3+3^4+3^5\right)+.....+\left(3^{2014}+3^{2015}+3^{2016}+3^{2017}\right)\)
\(=4+3^2\left(1+3+3^2+3^3\right)+.....+3^{2014}\left(1+3+3^2+3^3\right)\)
\(=4+3^2\cdot40+....+3^{2014}\cdot40\)
\(=4+40\left(3^2+.....+3^{2014}\right)\) chia 40 dư 4.
\(\frac{3-x}{2016}-1=\frac{2-x}{2017}+\frac{1-x}{2018}\)
\(\Rightarrow\frac{3-x}{2016}-1+2=\frac{2-x}{2017}+\frac{1-x}{2018}+2\)(thêm 2 vô mỗi vế)
\(\Rightarrow\frac{3-x}{2016}+1=\left(\frac{2-x}{2017}+1\right)+\left(\frac{1-x}{2018}+1\right)\)
\(\Rightarrow\frac{2019-x}{2016}=\frac{2019-x}{2017}+\frac{2019-x}{2018}\)
\(\Rightarrow\left(2019-x\right)\cdot\frac{1}{2016}=\left(2019-x\right)\left(\frac{1}{2017}+\frac{1}{2018}\right)\)
\(\Rightarrow2019-x=0\)
\(\Rightarrow x=2019\)
a) Gọi các số hạng của dãy trên lần lượt là a1; a2; a3; ...;an
Theo quy luật xây dựng dãy, ta có:
a2 - a1 = 4
a3 - a1 = 4
...
an - an - 1 = 4
Cộng n - 1 với đẳng thức trên lại, ta được: an - a1 = 4(n - 1) hay an = 4n - 1
Từ đó \(\Rightarrow\) số hạng thứ 100 của dãy là a100 = 4 . 100 - 1 = 399
b) Nhận thấy: 2015 = 4 . 504 - 1 nên số 2015 xuất hiện trong dãy trên và là phần tử thứ 504 của dãy.
a) Gọi các số hạng của dãy trên lần lượt là a1; a2; a3; ...;an
Theo quy luật xây dựng dãy, ta có:
a2 - a1 = 4
a3 - a1 = 4
...
an - an - 1 = 4
Cộng n - 1 với đẳng thức trên lại, ta được: an - a1 = 4(n - 1) hay an = 4n - 1
Từ đó ⇒⇒ số hạng thứ 100 của dãy là a100 = 4 . 100 - 1 = 399
b) Nhận thấy: 2015 = 4 . 504 - 1 nên số 2015 xuất hiện trong dãy trên và là phần tử thứ 504 của dãy.
4034 bn nhe