K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

a: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA⊥BC

30 tháng 12 2021

undefinedundefinedundefinedundefined

a: Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại trung điểm của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

b: Xét (O) có

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

=>BE\(\perp\)ED tại E

=>BE\(\perp\)AD tại E

Xét ΔDBA vuông tại B có BE là đường cao

nên \(AE\cdot AD=AB^2\left(3\right)\)

Xét ΔOBA vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(4\right)\) và \(OH\cdot OA=OB^2\)

Từ (3) và (4) suy ra \(AE\cdot AD=AH\cdot AO\)

c: Xét ΔOKH vuông tại K và ΔOIA vuông tại I có

\(\widehat{KOH}\) chung

Do đó: ΔOKH đồng dạng với ΔOAI

=>\(\dfrac{OK}{OA}=\dfrac{OH}{OI}\)

=>\(OK\cdot OI=OH\cdot OA\)

mà \(OH\cdot OA=OB^2\)

nên \(OK\cdot OI=OB^2=R^2=OD^2\)

=>\(\dfrac{OK}{OD}=\dfrac{OD}{OI}\)

Xét ΔOKD và ΔODI có

\(\dfrac{OK}{OD}=\dfrac{OD}{OI}\)

\(\widehat{KOD}\) chung

Do đó: ΔOKD đồng dạng với ΔODI

=>\(\widehat{ODK}=\widehat{OID}=90^0\)

=>KD là tiếp tuyến của (O)

25 tháng 12 2021

a: Xét tứ giác ABOC có

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

a: Xét tứ giác ABOC có \(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

nên ABOC là tứ giác nội tiếp

=>A,B,O,C cùng nằm trên 1 đường tròn

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là trung trực của BC

=>OA\(\perp\)BC tại H và H là trung điểm của BC

Xét (O) có

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

=>BE\(\perp\)ED tại E

=>BE\(\perp\)AD tại E

Xét ΔABD vuông tại B có BE là đường cao

nên \(AE\cdot AD=AB^2\)(3)

=>\(AE\cdot AD=AC^2\)

Xét ΔABO vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(4\right)\)

Từ (3) và (4) suy ra \(AE\cdot AD=AH\cdot AO\)

=>\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

Xét ΔAEH và ΔAOD có

\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

góc EAH chung

Do đó: ΔAEH đồng dạng với ΔAOD

=>\(\widehat{AHE}=\widehat{ADO}\)

c: Ta có: ΔOED cân tại O

mà OK là đường trung tuyến

nên OK\(\perp\)ED tại K

Xét ΔBOA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2=R^2\)

Xét ΔOKA vuông tại K và ΔOHF vuông tại H có

\(\widehat{KOA}\) chung

Do đó: ΔOKA đồng dạng với ΔOHF

=>\(\dfrac{OK}{OH}=\dfrac{OA}{OF}\)

=>\(OK\cdot OF=OA\cdot OH\)

=>\(OK\cdot OF=R^2=OD^2\)

=>\(\dfrac{OK}{OD}=\dfrac{OD}{OF}\)

Xét ΔOKD và ΔODF có

\(\dfrac{OK}{OD}=\dfrac{OD}{OF}\)

góc KOD chung

Do đó: ΔOKD đồng dạng với ΔODF

=>\(\widehat{OKD}=\widehat{ODF}\)

=>\(\widehat{ODF}=90^0\)

=>FD là tiếp tuyến của (O)

15 tháng 12 2022

a: Xét (O) có

AB,AC là các tiếp tuyến

nên AB=AC 

mà OB=OC

nên OA là trung trực của BC

Xét tứ giác OBAC có

góc OBA+góc OCA=180 độ

nên OBAC là tứ giác nội tiếp

b: Xét ΔAEC và ΔACD có

gó ACE=góc ADC

góc EAC chung

Do đo: ΔAEC đồng dạng với ΔACD

=>AE/AC=AC/AD

=>AC^2=AE*AD

15 tháng 12 2022

 

a: Xét (O) có

AB,AC là các tiếp tuyến

nên AB=AC 

mà OB=OC

nên OA là trung trực của BC

Xét tứ giác OBAC có

góc OBA+góc OCA=180 độ

nên OBAC là tứ giác nội tiếp

b: Xét ΔAEC và ΔACD có

gó ACE=góc ADC

góc EAC chung

Do đo: ΔAEC đồng dạng với ΔACD

=>AE/AC=AC/AD

=>AC^2=AE*AD

1 tháng 8 2023

a

Theo giả thiết có:

`AB=AC`

`OB=OC`

=> AO là đường trung trực của đoạn BC

=> AO⊥BC

b

Ta có:

`OB=OC=R`

Gọi điểm giao nhau của BC và OA là H có:

`HB=HC`

Từ trên suy ra: HO là đường trung bình của ΔCDB

=> HO//BD

=> OA//BD (H nằm trên đoạn OA)

 

1 tháng 8 2023

c

AB là tiếp tuyến đường tròn.

=> OB⊥AB

Lại có: BH⊥OA (cmt)

Áp dụng hệ thức lượng vào tam giác OAB vuông tại B, đường cao BH có:

\(\dfrac{1}{BH^2}=\dfrac{1}{AB^2}+\dfrac{1}{OB^2}\\ \Leftrightarrow\dfrac{1}{BH^2}=\dfrac{1}{8^2}+\dfrac{1}{6^2}\\ \Rightarrow BH=\sqrt{1:\left(\dfrac{1}{8^2}+\dfrac{1}{6^2}\right)}=\dfrac{24}{5}=4,8\left(cm\right)\)

\(BC=2BH\left(BH=HC\right)\\ \Rightarrow BC=2.4,8=9,6\left(cm\right)\)