K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

a: Xét ΔABM và ΔACM có

AM chung

AB=AC

BM=CM

Do đó: ΔABM=ΔACM

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên  AM là đường cao

c: Xét tứ giác ABDC có 

M là trung điểm của BC

M la trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

9 tháng 1 2022

Cảm ơn bạn nhìu nha yeu

 

15 tháng 12 2021

\(2,f\left(0\right)=0+1=1;f\left(-1\right)=-3+1=-2\\ 3,\\ a,\left\{{}\begin{matrix}AB=AC\\BM=MC\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\\ b,\Delta ABM=\Delta ACM\\ \Rightarrow\widehat{B}=\widehat{C}\\ c,\left\{{}\begin{matrix}AB=AC\\AM=MD\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{B}=\widehat{MCD}\\ \text{Mà 2 góc này ở vị trí so le trong nên }AB\text{//}CD\)

a: Xét ΔABM và ΔDCM có

MA=MD

góc AMB=góc DMC

MB=MC

=>ΔABM=ΔDCM
b: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

=>AC=BD

c: ABDC là hình bình hành

=>AB//DC

17 tháng 12 2023

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Ta có: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

=>\(\widehat{DAM}=\widehat{EAM}\)

Xét ΔDAM và ΔEAM có

DA=EA

\(\widehat{DAM}=\widehat{EAM}\)

AM chung

Do đó: ΔDAM=ΔEAM

=>MD=ME

c: Xét ΔNKD và ΔNMB có

NK=NM

\(\widehat{KND}=\widehat{MNB}\)(hai góc đối đỉnh)

ND=NB

Do đó: ΔNKD=ΔNMB

=>\(\widehat{NKD}=\widehat{NMB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên KD//BM

mà M\(\in\)BC

nên KD//BC

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

Ta có: KD//BC

DE//BC

KD,DE có điểm chung là D

Do đó: K,D,E thẳng hàng

24 tháng 11 2021

b) Vì AB=AC

⇒  ∆ABC cân tại A

⇒ AM là đường trung tuyến đồng thời là đường cao, phân giác

⇒ AM⊥BC

a) Xét ∆ABM và ∆ACM có:

AM: cạnh chung

^M1=^M2=90o(Vì AM⊥BC)

MB=MC(gt)

⇒ ∆ABM=∆ACM (c.g.c)

c) Xét ∆AMB và ∆DMC có:

MA=MD(gt)

^M1=^M3(đối đỉnh)

MB=MC(gt)

⇒ ∆AMB=∆DMC (c.g.c)

⇒ ^A1=^D1(t/ứ)

mà 2 góc có vị  trí so le trong 

⇒ CD//AB