Rút gọn biểu thức: \(A=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{1-\sqrt{x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{2}+2}{1-\sqrt{x}}\)
=\(\frac{3x+\sqrt{9}-3}{\sqrt{x}.\sqrt{x}+\sqrt{2x}-\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{\sqrt{2+2}}{\sqrt{x}-1}\) ( ở phân số đầu là \(\sqrt{9x}nhe\) )
=\(\frac{3x+\sqrt{9x}-3}{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\left(\sqrt{2}+2\right)\left(\sqrt{2}+2\right)}{\left(\sqrt{2}+2\right)\left(\sqrt{x}-1\right)}\)
=\(\frac{3x+\sqrt{9x}-3-\left(x-1\right)-\left(2+4\sqrt{2}+4\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
=\(\frac{2x+3\sqrt{x}-2\sqrt{2}-4\sqrt{2}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
=\(\frac{2x+3\sqrt{x}-6\sqrt{2}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
Vậy A=\(\frac{2x+3\sqrt{x}-6\sqrt{2}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
a) \(A=\frac{3+\sqrt{9x-3}}{x+\sqrt{x-2}}+\frac{\sqrt{x+1}}{\sqrt{x+2}}+\frac{\sqrt{x-2}}{1-\sqrt{x}}.\)
\(A=\frac{3x+3\sqrt{x-3}}{\left(\sqrt{x-1}\sqrt{x-2}\right)}-\frac{\sqrt{x+1}}{\sqrt{x+2}}-\frac{\sqrt{x-2}}{\sqrt{x-1}}\)
\(A=\frac{3x+3\sqrt{x-3}-\left(\sqrt{x+1}\right)\left(\sqrt{x-1}\right)-\left(\sqrt{x+2}\right)\left(\sqrt{x-2}\right)}{\left(\sqrt{x-1}\right)\left(\sqrt{x+2}\right)}\)
\(A=\frac{3x+3\sqrt{x-3}-\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x-1}\right)\left(\sqrt{x+2}\right)}\)
\(A=\frac{3x+3\sqrt{x-3}-x+1-x+4}{\left(\sqrt{x-1}\right)\left(\sqrt{x+2}\right)}=\frac{x+3\sqrt{x+2}}{\left(\sqrt{x-1}\right)\left(\sqrt{x+2}\right)}=\frac{\left(\sqrt{x+1}\right)\left(\sqrt{x+2}\right)}{\left(\sqrt{x+1}\right)\left(\sqrt{x-2}\right)}=\frac{\sqrt{x+1}}{\sqrt{x-1}}\)
Thêm phần
\(ĐK:\hept{\begin{cases}x>0\\\frac{x}{0}\end{cases}}\)tức là x khác 0