Xét tổng S=\(\frac{2}{2^1}+\frac{3}{2^2}+...+\frac{n+1}{2^n}+...+\frac{2016}{2^{2015}}\)
So sánh S với 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không cần giải cũng biết đáp án:
Nếu A là số dương thì A^2016>A^2015
Nếu A là số âm thì A^2016 là số dương , A^2015 là số âm nên chắc chắn A^2016>A^2015
k nha
Ta có :
\(T=\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}\)
\(\frac{1}{2}T=\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2015}{2^{2015}}\)
\(T-\frac{1}{2}T=\left(\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}\right)-\left(\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2015}{2^{2015}}\right)\)
\(\frac{1}{2}T=1+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}-\frac{2}{2^2}-\frac{3}{2^3}-\frac{4}{2^4}-...-\frac{2015}{2^{2015}}\)
\(\frac{1}{2}T=1+\left(\frac{3}{2^2}-\frac{2}{2^2}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+...+\left(\frac{2015}{2^{2014}}-\frac{2014}{2^{2014}}\right)-\frac{2015}{2^{2015}}\)
\(\frac{1}{2}T=1+\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\right)-\frac{2015}{2^{2015}}\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\)
\(2A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\)
\(2A-A=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\right)\)
\(A=\frac{1}{2}-\frac{1}{2^{2014}}\)
Mà \(\frac{1}{2^{2014}}>0\)
\(\Rightarrow\)\(A=\frac{1}{2}-\frac{1}{2^{2014}}< \frac{1}{2}\)
\(\Leftrightarrow\)\(1+A-\frac{2015}{2^{2015}}< 1+\frac{1}{2}-\frac{1}{2^{2014}}-\frac{2015}{2^{2015}}\)
\(\Leftrightarrow\)\(\frac{1}{2}T< \frac{3}{2}-\left(\frac{1}{2^{2014}}+\frac{2015}{2^{2015}}\right)\)
Mà \(\frac{1}{2^{2014}}+\frac{2015}{2^{2015}}>0\)
\(\Rightarrow\)\(\frac{1}{2}T< \frac{3}{2}\)
\(\Rightarrow\)\(\frac{1}{2}T.2< \frac{3}{2}.2\)
\(\Rightarrow\)\(T< 3\) ( đpcm )
Vậy \(T< 3\)
Bạn xem đúng không nhé, chúc bạn học tốt ~
\(P=\frac{3}{1!\left(1+2\right)+3!}+\frac{4}{2!\left(1+3\right)+4!}+...+\frac{2017}{2015!\left(1+2016\right)+2017!}\)
\(P=\frac{3}{3\left(1!+2!\right)}+\frac{4}{4\left(2!+3!\right)}+...+\frac{2017}{2017\left(2015!+2016!\right)}\)
\(P=\frac{1}{1!+2!}+\frac{1}{2!+3!}+...+\frac{1}{2015!+2016!}\)
Ta có \(a!>\sqrt{a}\)\(\left(a\inℕ;a>1\right)\) do đó :
\(P>\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2015}+\sqrt{2016}}\)
\(=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\)
\(\frac{\sqrt{2016}-\sqrt{2015}}{\left(\sqrt{2016}+\sqrt{2015}\right)\left(\sqrt{2016}-\sqrt{2015}\right)}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2016}\)
\(-\sqrt{2015}=\sqrt{2016}-1=\frac{1}{2}+\left(\sqrt{2016}-\frac{3}{2}\right)=\frac{1}{2}+\left(\sqrt{2016}-\sqrt{\frac{9}{4}}\right)>\frac{1}{2}\)
Vậy \(P>\frac{1}{2}\)
Chúc bạn học tốt ~
PS : tự nghĩ bừa thui nhé :))
Ta có :
\(S=2015+\frac{2015}{1+2}+\frac{2015}{1+2+3}+...+\frac{2015}{1+2+3+..+2016}\)
\(=2015.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+..+2016}\right)\)
\(=2015.\left(1+\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+...+\frac{1}{\frac{\left(2016+1\right).2016}{2}}\right)\)
\(=2015.\left(\frac{2}{2}+\frac{2}{2.\left(2+1\right)}+\frac{2}{3.\left(3+1\right)}+...+\frac{2}{2016.\left(2016+1\right)}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2.\left(2+1\right)}+\frac{1}{3.\left(3+1\right)}+...+\frac{1}{2016.\left(2016+1\right)}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right)\)
\(=2015.2.\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{2017}\right)\)
\(=2015.2.\left(1-\frac{1}{2017}\right)\)
\(=2015.2.\frac{2016}{2017}\)
=\(\frac{2015.2.2016}{2017}\)
=\(\frac{8124480}{2017}\)
Vậy \(S=\frac{8124480}{2017}\)
\(S=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+.....+\frac{n}{2^n}+......+\frac{2017}{2^{2017}}\)
Với n > 2 thì \(\frac{n}{2^n}=\frac{n+1}{2^{n-1}}-\frac{n+2}{2^n}\)
\(\frac{n+1}{2^{n-1}}=\frac{n+1}{2^n:2}=\frac{n+1}{\frac{2^n}{2}}=\frac{2^{\left(n+1\right)}}{2^n}\)
\(\frac{n+1}{2^{n-1}}-\frac{n+2}{2^n}=\frac{2^{n+2}}{2^n}-\frac{n+2}{2^n}\)
\(=\frac{2^{n+2}-n-2}{2^n}\)
\(=\frac{n}{2^n}\)
\(\Leftrightarrow S=\frac{1}{2}+\left(\frac{2+1}{2^{2-1}}-\frac{2+2}{2^2}\right)+.....+\frac{2016+1}{2^{2015}}-\frac{2018}{2^{2016}}\)
\(=\frac{2017+1}{2^{2016}}-\frac{2019}{2^{2017}}\)
\(S=\frac{1}{2}+\frac{3}{2}-\frac{2019}{2017}\)
\(S=2-\frac{2019}{2017}\)
\(\Leftrightarrow S=2-\frac{2019}{2017}< 2\)
Hay \(S< 2\)