K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 10

Lời giải:
$1+\frac{1}{2}(1+2)+\frac{1}{3}(1+2+3)+...+\frac{1}{16}(1+2+3+...+16)$

$=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+....+\frac{1}{16}.\frac{16.17}{2}$

$=1+\frac{3}{2}+\frac{4}{2}+....+\frac{17}{2}$

$=\frac{2+3+4+...+17}{2}=\frac{1+2+3+...+17}{2}-\frac{1}{2}=\frac{17.18}{2.2}-\frac{1}{2}=76$

19 tháng 4 2016

ta có

A = \(1+\frac{1+2}{2}+\frac{1+2+3}{3}+\frac{1+2+3+4}{4}+......+\frac{1+2+3+\text{4 +....+16}}{16}\)

xét tổng S = 1+2+3+4+5+......+n  = \(\frac{\left(n+1\right)n}{2}\) lấy \(\frac{S}{n}=\frac{\frac{\left(n+1\right)n}{2}}{n}=\frac{n+1}{2}\)

ta có

A=\(1+\frac{\frac{2\left(2+1\right)}{2}}{2}+\frac{\frac{3\left(3+1\right)}{2}}{3}+\frac{\frac{4\left(4+1\right)}{2}}{4}+\frac{\frac{5\left(5+1\right)}{2}}{5}+......+\frac{\frac{16\left(16+1\right)}{2}}{16}\)

A = \(1+\frac{1+2}{2}+\frac{1+3}{2}+\frac{1+4}{2}+\frac{1+5}{2}+......+\frac{1+16}{2}\)

A = \(1+\frac{1+2+1+3+1+\text{4+1+5+1+6+.....+1+16}}{2}\)

A = \(1+\frac{151}{2}\)

A = \(\frac{153}{2}\)

28 tháng 3 2017

bằng 76 mới đúng

11 tháng 3 2018

chứng minh rằng B là số nguyên khi A là phân số

7 tháng 5 2015

A=1+1/2x3+1/3X6+1/4X10+...+1/16X136

A=1+3/2+2+5/2+3+...+17/2

A=2/2+3/2+4/2+5/2+6/2+...+17/2

A=2+3+4+5+...+16+17/2

A=(2+17)x16:2/2

A=19x16:2/2

A=304:2/2

A=152/2

A=76

****

6 tháng 4 2018

Ta có : 

\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+4+...+16\right)\)

\(=\)\(1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+\frac{1}{4}.\frac{4\left(4+1\right)}{2}+...+\frac{1}{16}.\frac{16\left(16+1\right)}{2}\)

\(=\)\(1+\frac{2+1}{2}+\frac{3+1}{2}+\frac{4+1}{2}+...+\frac{16+1}{2}\)

\(=\)\(\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{17}{2}\)

\(=\)\(\frac{2+3+4+5+...+17}{2}\)

\(=\)\(\frac{\frac{16\left(17+2\right)}{2}}{2}\)

\(=\)\(\frac{152}{2}\)

\(=\)\(76\)

Bài này áp dụng công thức \(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\) nhé 

Chúc bạn học tốt ~