Tìm giá trị nhỏ nhất của biểu thức P=1-xy, trong đó x, y là các số thực thỏa mãn \(x^{2013}+y^{2013}=2x^{1006}y^{1006}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> [x^2013+y^2013]^2 = 4.x^2012.y^2012
[x^2013+y^2013]^2 \(\ge\)4.x^2013.y^2013= >4.x^2012.y^2012\(\ge\)4.x^2013.y^2013 => 1 \(\ge\) xy => 1-xy \(\ge\) 0
Dấu bằng xảy ra khi x=y= 1
Vậy min 1-xy = 0 khi x=y=1
- Với \(xy=0\Rightarrow P=1\)
- Với \(xy\ne0\):
Bình phương giả thiết:
\(4x^{2012}y^{2012}=\left(x^{2013}+y^{2013}\right)^2\ge4x^{2013}y^{2013}\)
\(\Rightarrow4x^{2012}y^{2012}\left(1-xy\right)\ge0\)
\(\Rightarrow1-xy\ge0\)
\(\Rightarrow P_{min}=0\) khi \(x=y=1\)
Ta có: \(A=2013-xy\Leftrightarrow y=\frac{2013-A}{x}\)
Đặt \(2013-A=B\)thì ta có \(y=\frac{B}{x}\)(1)
Theo đề bài có
\(5x^2+\frac{y^2}{4}+\frac{1}{4x^2}=\frac{5}{2}\)
\(\Leftrightarrow5x^2+\frac{B^2}{4x^2}+\frac{1}{4x^2}=\frac{5}{2}\)
\(\Leftrightarrow20x^4-10x^2+B^2+1=0\)
Để PT có nghiệm (theo biến x2) thì \(\Delta\ge0\)
\(\Leftrightarrow5^2-20\left(B^2+1\right)\ge0\)
\(\Leftrightarrow B^2\le0,25\Leftrightarrow-0,5\le B\le0,5\)
\(\Leftrightarrow-0,5\le2013-A\le0,5\)
\(\Leftrightarrow2012,5\le A\le2013,5\)
Đạt GTLN khi \(\left(x,y\right)=\left(\frac{1}{2},-1;-\frac{1}{2},1\right)\)
Đạt GTNN khi \(\left(x;y\right)=\left(\frac{1}{2},1;-\frac{1}{2},-1\right)\)
\(B=\frac{x^3}{y+1}+\frac{y^3}{1+x}=\frac{\left(x^4+y^4\right)+\left(x^3+y^3\right)}{xy+x+y+1}\)
\(=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-xy\right)}{x+y+2}=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-1\right)}{x+y+2}\)
Áp dụng BĐT cô si với các số dương x2 ; y2 ; x4 ; y4 ta được :
\(B\ge\frac{2x^2y^2+\left(x+y\right)\left(2xy-1\right)}{x+y+2}=\frac{2+\left(x+y\right)}{x+y+2}=1\)
Dấu ''='' xảy ra khi \(\Leftrightarrow x=y=1\)
Áp dụng BĐT Cô-si:
X4+1\(\ge\) 2X2 Dấu = xảy ra <=> X=1
Y4 + 1\(\ge\) 2Y2 Dấu = xảy ra <=> Y=1
=> P\(\ge\) 2X2 . 2Y2+2013
\(\ge\) 4X2Y2 +2013
Vì 4X2Y2\(\ge\) 0
=> P \(\ge\) 2013
Vậy Min P= 2013 tại X=Y=1
Chọn đáp án C
Phương pháp
Biến đổi giả thiết để tìm mối liên hệ của x theo y. Thay vào biểu thức P rồi sử dụng phương pháp hàm số để tìm giá trị nhỏ nhất của P.
\(y\ge\dfrac{8-x}{x+1}\Rightarrow P\ge4x+\dfrac{8-x}{x+1}+3=\dfrac{4x^2+6x+11}{x+1}=\dfrac{4x^2-4x+1+10\left(x+1\right)}{x+1}=\dfrac{\left(2x-1\right)^2}{x+1}+10\ge10\)
\(P_{min}=10\) khi \(\left(x;y\right)=\left(\dfrac{1}{2};5\right)\)
\(P=\dfrac{x^2+y^2+6}{x+y}=\dfrac{x^2+y^2+2xy+4}{x+y}=\dfrac{\left(x+y\right)^2+4}{x+y}=x+y+\dfrac{4}{x+y}\)
\(P\ge2\sqrt{\left(x+y\right).\dfrac{4}{x+y}}=4\)
\(P_{min}=4\) khi \(x=y=1\)
Xét 2 trường hợp:
TH1 : Nếu x,y trái dấu \(\Rightarrow xy< 0\Rightarrow P=1-xy>1\)
TH2: Nếu x,y cùng dấu \(\Rightarrow\)xy\(\ge0\) \(\Rightarrow\)có 2 trường hợp xảy ra:
* Nếu xy=0\(\Rightarrow P=1-xy=1\)
* Nếu xy\(\ne0\Rightarrow\) \(xy>0\)
Áp dụng bđt Cô-si : \(2x^{1006}y^{1006}=x^{2013}+y^{2013}\ge2x^{1006}y^{1006}\sqrt{xy}\Rightarrow\sqrt{xy}\le1\Rightarrow xy\le1\)
\(\Rightarrow-xy\ge-1\) \(\Rightarrow P=1-xy\ge1-1=0\)
Dấu = xảy ra \(\Leftrightarrow x=y=1\)
Vậy gtnn của P=0 \(\Leftrightarrow x=y=1\)