Phân tích đa thức thành nhân tử
\(2x^2-5x+1\)
\(x^4-5x^2+4\)
\(x^3-x^2+2x+4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=\left(x^2-6\right)\left(x^2-1\right)=\left(x^2-6\right)\left(x-1\right)\left(x+1\right)\)
b) \(=\left(x^2-1\right)\left(x^2+3\right)=\left(x-1\right)\left(x+1\right)\left(x^2+3\right)\)
c) \(=x^2\left(x-1\right)-x\left(x-1\right)+4\left(x-1\right)=\left(x-1\right)\left(x^2-x+4\right)\)
c. \(x^4-2x^3-2x^2-2x-3=x^3\left(x-3\right)+x^2\left(x-3\right)+x\left(x-3\right)+x-3\)
\(=\left(x-3\right)\left(x^3+x^2+x+1\right)=\left(x-3\right)\left(x+1\right)\left(x^2+1\right)\)
#)Giải :
\(x^3-2x-4\)
\(=x^3+2x^2-2x^2+2x-4x-4\)
\(=x^3+2x^2+2x-2x^2-4x-4\)
\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
\(x^4+2x^3+5x^2+4x-12\)
\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)
\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)
Câu 1.
Đoán được nghiệm là 2.Ta giải như sau:
\(x^3-2x-4\)
\(=x^3-2x^2+2x^2-4x+2x-4\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+2\right)\)
a)x^2-(a+b)x+ab
= x^2 - ax - bx + ab
= (x^2 - ax) - (bx - ab)
= x(x-a) - b(x-a)
= (x-b)(x-a)
b)7x^3-3xyz-21x^2+9z
=
c)4x+4y-x^2(x+y)
= 4(x + y) - x^2(x+y)
= (4-x^2) (x+y)
= (2-x)(2+x)(x+y)
d) y^2+y-x^2+x
= (y^2 - x^2) + (x+y)
= (y-x)(y+x)+ (x+y)
= (y-x+1) (x+y)
e)4x^2-2x-y^2-y
= [(2x)^2 - y^2] - (2x +y)
= (2x-y)(2x+y) - (2x+y)
= (2x -y -1)(2x+y)
f)9x^2-25y^2-6x+10y
=
a: x^3-7x-6
=x^3-x-6x-6
=x(x-1)(x+1)-6(x+1)
=(x+1)(x^2-x-6)
=(x-3)(x+2)(x+1)
b: =2x^3+x^2-2x^2-x+6x+3
=x^2(2x+1)-x(2x+1)+3(2x+1)
=(2x+1)(x^2-x+3)
c: =2x^3-3x^2-2x^2+3x+2x-3
=x^2(2x-3)-x(2x-3)+(2x-3)
=(2x-3)(x^2-x+1)
d: =2x^3+x^2+2x^2+x+2x+1
=(2x+1)(x^2+x+1)
e: =3x^3+x^2-3x^2-x+6x+2
=(3x+1)(x^2-x+2)
f: =27x^3-9x^2-18x^2+6x+12x-4
=(3x-1)(9x^2-6x+4)
a) \(x^3-7x-6\)
\(=x^3-x-6x-6\)
\(=\left(x^3-x\right)-\left(6x+6\right)\)
\(=x\left(x^2-1\right)-6\left(x+1\right)\)
\(=x\left(x+1\right)\left(x-1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-6\right)\)
b) \(2x^3-x^2+5x+3\)
\(=2x^3+x^2-2x^2-x+6x+3\)
\(=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)
\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)
\(=\left(x^2-x+3\right)\left(2x+1\right)\)
c) \(2x^3-5x^2+5x+1\)
\(=2x^3-3x^2-2x^2+3x+2x-3\)
\(=\left(2x^3-3x^2\right)-\left(2x^2-3x\right)+\left(2x-3\right)\)
\(=x^2\left(2x-3\right)-x\left(2x-3\right)+\left(2x-3\right)\)
\(=\left(x^2-x+1\right)\left(2x-3\right)\)
d) \(2x^3+3x^2+3x+1\)
\(=2x^3+x^2+2x^2+x+2x+1\)
\(=\left(2x^3+x^2\right)+\left(2x^2+x\right)+\left(2x+1\right)\)
\(=x^2\left(2x+1\right)+x\left(2x+1\right)+\left(2x+1\right)\)
\(=\left(2x+1\right)\left(x^2+x+1\right)\)
e) \(3x^3-2x^2+5x+2\)
\(=3x^3+x^2-3x^2-x+6x+2\)
\(=\left(3x^3+x^2\right)-\left(3x^2+x\right)+\left(6x+2\right)\)
\(=x^2\left(3x+1\right)-x\left(3x+1\right)+2\left(3x+1\right)\)
\(=\left(3x-1\right)\left(x^2-x+2\right)\)
f) \(27x^3-27x^2+18x-4\)
\(=27x^3-9x^2-18x^2+6x+12x-4\)
\(=\left(27x^3-9x^2\right)-\left(18x^2-6x\right)+\left(12x-4\right)\)
\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
\(b,=x^4-2x^3-x^3+2x^2+3x^2-6x-3x+6\\ =\left(x-2\right)\left(x^3-x^2+3x-3\right)\\ =\left(x-2\right)\left(x-1\right)\left(x^2+3\right)\\ c,=x^4-2x^3+4x^3-8x^2+4x^2-8x+3x-6\\ =\left(x-2\right)\left(x^3+4x^2+4x+3\right)\\ =\left(x-2\right)\left(x^3+3x^2+x^2+3x+x+3\right)\\ =\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)\)
2: =(2x+1)^2-y^2
=(2x+1+y)(2x+1-y)
3: =x^2(x^2+2x+1)
=x^2(x+1)^2
4: =x^2+6x-x-6
=(x+6)(x-1)
5: =-6x^2+3x+4x-2
=-3x(2x-1)+2(2x-1)
=(2x-1)(-3x+2)
6: =5x(x+y)-(x+y)
=(x+y)(5x-1)
7: =2x^2+5x-2x-5
=(2x+5)(x-1)
8: =(x^2-1)*(x^2-4)
=(x-1)(x+1)(x-2)(x+2)
9: =x^2(x-5)-9(x-5)
=(x-5)(x-3)(x+3)
A = 6x4 - 5x3 + 4x2 + 2x - 1
= 6x4 + 3x3 - 8x3 - 4x2 + 8x2 + 4x - 2x - 1
= 3x3. ( 2x + 1 ) - 4x2 ( 2x + 1 ) + 4x ( 2x + 1 ) - ( 2x + 1 )
= ( 2x + 1 ) ( 3x3 - 4x2 + 4x - 1 )
= ( 2x + 1 ) ( 3x3 - x2 - 3x2 + x + 3x - 1 )
= ( 2x + 1 ) [ x2 ( 3x - 1 ) - x ( 3x - 1 ) + ( 3x - 1 ) ]
= ( 2x + 1 ) ( 3x - 1 ) ( x2 - x + 1 )
B = 4x4 + 4x3 + 5x2 + 8x - 6
= 4x4 - 2x3 + 6x3 - 3x2 + 8x2 - 4x + 12x - 6
= 2x3 ( 2x - 1 ) + 3x2 ( 2x - 1 ) + 4x ( 2x - 1 ) + 6 ( 2x - 1 )
= ( 2x - 1 ) ( 2x3 + 3x2 + 4x + 6 )
= ( 2x - 1 ) [ x2 ( 2x + 3 ) + 2 ( 2x + 3 ) ]
= ( 2x - 1 ) ( 2x + 3 ) ( x2 + 2 )
C = x4 + x3 - 5x2 + x - 6
= x4 - 2x3 + 3x3 - 6x2 + x2 - 2x + 3x - 6
= x3 ( x - 2 ) + 3x2 ( x - 2 ) + x ( x - 2 ) + 3 ( x - 2 )
= ( x - 2 ) ( x3 + 3x2 + x + 3 )
= ( x - 2 ) [ x2 ( x + 3 ) + ( x + 3 ) ]
= ( x - 2 ) ( x + 3 ) ( x2 + 1 )
\(x^4-5x^2+4=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)