Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, A n B ⏜ - cung lớn; A m B ⏜ - cung nhỏ
Vì sđ A n B ⏜ + sđ A m B ⏜ = 360 0 ; mà sđ A n B ⏜ = 3sđ A m B ⏜
nên sđ A n B ⏜ = 270 0 và độ dài cung A n B ⏜ là l = 3 πR 2
b, Vì DOAB vuông cân => A O B ^ = 90 0 và O A B ^ = O B A ^ = 45 0
c, Vì AB = R 2 => OH = R 2 2 (OH ⊥ AB; H ∈ AB)
Lời giải:
a. Câu hỏi chưa rõ ràng
b. Vì số đo cung nhỏ AB bằng một nửa số đo cung lớn AB mà tổng số
đo 2 cung bằng $360^0$ nên số đo cung nhỏ $AB$ là $120^0$
Từ $O$ kẻ $OH\perp AB$ như hình. Tam giác $OAB$ cân tại $O$ nên đường cao $OH$ đồng thời là đường phân giác, trung tuyến.
Do đó: $\widehat{AOH}=\frac{1}{2}\widehat{AOB}=\frac{1}{2}.120^0=60^0$
$\frac{AH}{AO}=\sin \widehat{AOH}=\sin 60^0=\frac{\sqrt{3}}{2}$
$\Rightarrow AH=\frac{\sqrt{3}}{2}AO=\frac{\sqrt{3}}{2}R$
$\Rightarrow AB=2AH=\sqrt{3}R$
c) Gọi P là trung điểm của AB
Do tam giác OAB cân tại O nên OP ⊥ AB
Tam giác OAP vuông tại P có:
a: BA là tiếp tuyến của (O) có B là tiếp điểm
=>OB\(\perp\)BA tại B
=>ΔOBA vuông tại B
ΔBOA vuông tại B
=>\(BO^2+BA^2=OA^2\)
=>\(BA^2=\left(2R\right)^2-R^2=3R^2\)
=>\(BA=R\sqrt{3}\)
b: ΔOBC cân tại O
mà OA là đường cao
nên OA là tia phân giác của \(\widehat{BOC}\)
Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
=>\(\widehat{OCA}=\widehat{OBA}=90^0\)
=>AC là tiếp tuyến của (O)
c: Xét ΔABO vuông tại B có \(sinBAO=\dfrac{BO}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BAO}=30^0\)
ΔOBA=ΔOCA
=>\(\widehat{BAO}=\widehat{CAO}\) và AB=AC
=>\(\widehat{BAC}=2\cdot\widehat{BAO}=2\cdot30^0=60^0\)
Xét ΔABC có AB=AC và \(\widehat{BAC}=60^0\)
nên ΔABC đều
Lời giải:
Từ $O$ hạ $OH\perp AB$ thì $H$ là trung điểm của $AB$
Tam giác $OAB$ cân tại $O$ nên đường cao, đường trung tuyến $OH$ đồng thời là đường phân giác.
$\Rightarrow \widehat{AOH}=60^0$
$\sin \widehat{AOH}=\frac{AH}{AO}=\frac{\sqrt{3}}{2}$
$\Rightarrow AH=AO.\frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}R$
$\Rightarrow AB=\sqrt{3}R$ (độ dài dây $AB$)
Diện tích tam giác $AOB$ là:
$\frac{1}{2}.OA.OB.\sin \widehat{AOB}=\frac{1}{2}R^2.\sin 120^0=\frac{\sqrt{3}}{4}R^2$
Hình vẽ: