tìm x thuộc Z để: x+4/x-2 + 2x-5/x-2 là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne\pm3\)
a
Khi x = 1:
\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)
Khi x = 2:
\(A=\dfrac{3.2+2}{2-3}=-8\)
Khi x = \(\dfrac{5}{2}:\)
\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)
b
Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên
\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)
Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)
c
Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên
\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)
\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)
d
\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)
=> Để A, B cùng là số nguyên thì x = 4.
1: Để A nguyên thì x+3-4 chia hết cho x+3
=>\(x+3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{-2;-4;-1;-5;1;-7\right\}\)
2: Để B nguyên thì 2x+4-9 chia hết cho x+2
=>\(x+2\in\left\{1;-1;3;-3;9;-9\right\}\)
=>\(x\in\left\{-1;-3;1;-5;7;-11\right\}\)
\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{7}{12}-\left(\frac{5}{2}-\frac{13}{6}\right)\)
\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{7}{12}-\frac{1}{3}\)
\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{1}{4}\)
\(\frac{2}{3}-x+\frac{5}{4}=\frac{1}{3}-\frac{1}{4}\)
\(\frac{2}{3}-x+\frac{5}{4}=\frac{1}{12}\)
\(\frac{2}{3}-x=\frac{1}{12}-\frac{5}{4}\)
\(\frac{2}{3}-x=-\frac{7}{6}\)
\(x=\frac{2}{3}-\left(-\frac{7}{6}\right)\)
\(x=\frac{2}{3}+\frac{7}{6}\)
\(x=\frac{11}{6}\)
\(\dfrac{x^2+2x+1}{x^2-1}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}=\dfrac{x-1+2}{x-1}=1+\dfrac{2}{x-1}\)
vậy để biểu thức là số nguyên thì
`2` phải chia hết cho `x-1`
`=>x-1` thuộc tập hợp ước của 2
mà `x` thuộc `Z` nên ta có bảng sau
x-1 | 1 | -1 | 2 | -2 |
x | 2(tm) | 0(tm) | 3(tm) | -1(tm) |
vậy \(x\in\left\{2;0;3;-1\right\}\)
B=(x+1)^2/(x+1)(x-1)=(x+1)/(x-1)
Để B nguyên thì x-1+2 chia hết cho x-1
=>\(x-1\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{2;0;3\right\}\)
Lời giải:
$A = \frac{x+4}{x-2}+\frac{2x-5}{x-2}=\frac{x+4+2x-5}{x-2}=\frac{3x-1}{x-2}$
Với $x$ nguyên, để $A$ nguyên thì:
$3x-1\vdots x-2$
$\Rightarrow 3(x-2)+5\vdots x-2$
$\Rightarrow 5\vdots x-2$
$\Rightarrow x-2\in \left\{\pm 1; \pm 5\right\}$
$\Rightarrow x\in \left\{1; 3; 7; -3\right\}$
Lời giải:
$A = \frac{x+4}{x-2}+\frac{2x-5}{x-2}=\frac{x+4+2x-5}{x-2}=\frac{3x-1}{x-2}$
Với $x$ nguyên, để $A$ nguyên thì:
$3x-1\vdots x-2$
$\Rightarrow 3(x-2)+5\vdots x-2$
$\Rightarrow 5\vdots x-2$
$\Rightarrow x-2\in \left\{\pm 1; \pm 5\right\}$
$\Rightarrow x\in \left\{1; 3; 7; -3\right\}$