Biết \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a},\)với a,b,c là các số thực khác 0.
Tính giá trị của biểu thức M= \(\dfrac{a^{2019}+b^{2019}+c^{2019}}{a^{672}b^{673}c^{674}}\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
Do đó: \(\hept{\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{cases}}\Rightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)
Thay a = b = c vào M
\(\Rightarrow M=\frac{a^{2019}+b^{2019}+c^{2019}}{a^{672}.b^{673}.c^{674}}=\frac{a^{2019}+a^{2019}+a^{2019}}{a^{672}.a^{673}.a^{674}}=\frac{3.a^{2019}}{a^{2019}}=3\)
oh no bài thứ nhất là dạng chứng minh cs đúng ko ,
ko thể nào là dạng tìm a,b,c đc-.-
Lời giải:
Đặt $\frac{a+b}{3}=\frac{b+c}{4}=\frac{c+a}{5}=t$
$\Rightarrow a+b=3t; b+c=4t; c+a=5t$
$\Rightarrow a+b+c=\frac{3t+4t+5t}{2}=6t$
$\Rightarrow c=6t-3t=3t; b=6t-5t=t; a=6t-4t=2t$
Khi đó:
$P=17a-7b-9c+2019=17.2t-7t-9.3t+2019=0.t+2019=2019$
Đề đúng : \(M=\frac{a^{2019}+b^{2019}+c^{2019}}{a^{672}.b^{673}.c^{674}}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{c+b+a}=1\Rightarrow a=b=c\)
\(\Rightarrow M=\frac{a^{2019}+b^{2019}+c^{2019}}{a^{672}.b^{673}.c^{674}}=\frac{a^{2019}+a^{2019}+a^{2019}}{a^{672}.a^{673}.a^{674}}=\frac{3\left(a^{2019}\right)}{a^{2019}}=3\)
Vậy \(M=3\)
hơi khó nhưng mong mọi người giải được
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b=c\)
\(\Rightarrow M=\dfrac{a^{2019}+a^{2019}+a^{2019}}{a^{672}.a^{673}.a^{674}}\)
\(\Rightarrow M=\dfrac{3a^{2019}}{a^{672+673+674}}\)
\(\Rightarrow M=\dfrac{3a^{2019}}{a^{2019}}\)
\(\Rightarrow M=3\)
Có j sai thì mk xl nhé!