K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2019

quy đồng mẫu số ta được

\(\frac{\left(a-b\right)^2}{a\left(a^2-b^2\right)}+\frac{\left(a+b\right)^2}{a\left(a^2-b^2\right)}=\frac{a\left(3a-b\right)}{a\left(a^2-b^2\right)}\)<=> (a-b)2 +(a+b)2 = a(3a-b) <=> a2- ab- 2b2= 0 <=> (a+ b)(a- 2b) = 0

<=> a=-b hoăc a =2b

với a= -b => P= \(\frac{-b^3+2b^3+2b^3}{-2b^3-b^3+2b^3}=-3\)

với a =2b => P= \(\frac{\left(2b\right)^3+2.\left(2b\right)^2b+2b^3}{2.\left(2b\right)^3+2b.b^2+2b^3}=\frac{3}{2}\)

NV
14 tháng 8 2020

Coi như biểu thức xác định

\(\frac{a-b}{a\left(a+b\right)}+\frac{a+b}{a\left(a-b\right)}=\frac{3a-b}{\left(a-b\right)\left(a+b\right)}\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a+b\right)^2=a\left(3a-b\right)\)

\(\Leftrightarrow2a^2+2b^2=3a^2-ab\)

\(\Leftrightarrow a^2-ab-2b^2=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow a=2b\Leftrightarrow\frac{a}{b}=2\)

\(P=\frac{\left(\frac{a}{b}\right)^3+2\left(\frac{a}{b}\right)^2+2}{2\left(\frac{a}{b}\right)^3+\frac{a}{b}+2}=\frac{2^3+2.2^2+2}{2.2^3+2+2}=...\)

22 tháng 6 2019

\(4a^2+b^2=5ab\)

\(\Rightarrow4a^2-5ab+b^2=0\)

\(\Rightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)

\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)

Làm nốt

29 tháng 12 2017

Sửa lại đề bài:  1 / 2a- b 

                   ( MÁY MK KO ĐÁNH ĐC PHÂN SỐ MONG BN THÔNG CẢM)

mới lm đc nhé bn! 

a) ĐKXĐ: bn tự lm nhé ! 

bn biến đổi: 2a3-b+2a-a2b =  (2a-b)  + ( 2a3-a2b) = (2a-b) + a2(2a-b) = (2a-b)(a2+1) 

rồi bn nhân 1 / 2a+b với a2+1 rồi trừ 2 phân thức với nhau sẽ ra 0 => A=0

29 tháng 12 2017

Bạn nào giúp tớ với!